
Advertising Substantiation Principles



What claims does the advertisement convey 
to reasonable consumers?

Does the material submitted by the 
advertiser substantiate those claims?

Framework for Reviewing 
Advertising



What principles should govern the 
substantiation of claims made in
advertising?

Examining the quality of the substantiation

Evaluating scientific studies

Substantiation



- Substantiate Before Disseminating
- Responsible for All Reasonable Interpretations
- Substantiate All Express and Implied Claims 
- Using Extrinsic Evidence
- Level of Substantiation Needed 
- “Reasonable Basis” for Making Claims
- “Competent and Reliable” Scientific Evidence

Identifying General Principles 
Substantiation



SUBSTANTIATION  
Before disseminating an 
advertisement, the advertiser must 
substantiate all claims – express and 
implied – that the ad conveys to 
reasonable consumers.

Substantiation Policy Statement, 
appended to Thompson Medical Co., 104 F.T.C. 648 (1984)



Deception Policy Statement, 103 F.T.C. 174 (1984)

“To be considered reasonable, the 
interpretation does not have to be the only 
one. When a seller’s representation conveys 
more than one meaning to reasonable 
consumers, one of which is false, the seller 
is liable for the misleading interpretation.”

ADVERTISERS ARE LIABLE FOR ALL 
REASONABLE INTERPRETATIONS

TRUE FALSE

Substantiation



EXPRESS AND IMPLIED CLAIMS 
NEED TO BE SUBSTANTIATED

- The advertisement may imply more
substantiation than it expressly claims 

- The advertisement may imply to consumers
that it has a certain type of support

Substantiation



USING EXTRINSIC EVIDENCE

Expert testimony, consumer surveys and other 
extrinsic evidence can be useful in determining:

- what the ad is actually communicating to 
consumers, and 

- the level of substantiation that consumers 
expect to support a particular product claim.

Substantiation



HOW MUCH 
SUBSTANTIATION IS NEEDED?

The advertiser must possess at least the level of 
substantiation expressly or impliedly claimed in 
the advertisement:

“Tests Prove …”
“Doctors Recommend …”

“Studies Show …”

Substantiation



“REASONABLE BASIS” STANDARD

When an ad does not make an express or 
implied references to a certain level of support 
and, in the absence of other evidence indicating 
what consumer expectations would be, it is 
assumed that consumers expect that the 
advertiser had a “reasonable basis” for making 
the claims.

Substantiation



“REASONABLE BASIS” FACTORS:

- Type of claim
- Benefits if the claim is true
- Consequences if the claim is false
- The ease and cost of developing substantiation 

for the claim
- Type of product
- The level of substantiation experts in the field 

would agree is reasonable

Substantiation



USING EXTRINSIC EVIDENCE

Expert testimony and other extrinsic evidence 
also can be useful in determining the 
ADEQUACY of the evidence an advertiser 
possesses.

Substantiation



WHAT’S REQUIRED DEPENDS 
ON NATURE OF THE CLAIM

• Our laptop comes in 4 eye-popping colors.

• Our laptop weighs ten ounces less than the 
ConDaq ZX.

• Our laptop downloads web pages 57% faster.

Substantiation



If you don’t believe that
something lite can taste 
delicious, then try new 

Klondike Lite. 
It’s 93% fat-free.

Substantiation



*All Lean Cuisine entrées have 
been reformulated to contain less 
than 1 gram (1000 mg) of sodium.

Stouffer Foods Corp., 118 F.T.C. 746 (1994)

Of all the things we pack into our 34 
Lean Cuisine entrées … there are some 
things we skimp on:  Calories. Fat. 
Sodium.  With less than 300 calories, 
controlled fat and always less than 1 
gram of sodium* per entrée, we make 
good sense taste great.



OUT OF
PEDIATRICIANS*

RECOMMEND

Gerber ®
*A 1994 CONTEMPORARY PEDIATRICS RECOMMENDATION STUDY FOUND THAT
88% OF PEDIATRICIANS WHO RECOMMEND BABY FOOD RECOMMEND GERBER.

*A 1994 Contemporary Pediatrics 
Recommendation Study found that 

88% of pediatricians who 
recommend baby food 
recommend Gerber.

Substantiation



Kraft, 114 F.T.C. 40 (1991), aff’d, 970 F.2d 311 (7th Cir. 1992),
cert. denied, 507 U.S. 909 (1993)

Kraft Singles are made from five ounces of 
milk per slice, so I don’t have to.  Because 
Kraft Singles give my kids great nutrition, 
like calcium and protein.  Sure, I could buy 
imitation slices.  But some use hardly any 
milk. Kraft Singles.  More milk makes ‘em 
good.



Is your tap water as clean as it 
seems?  It could contain 
impurities.  The Norelco Clean 
Water Machine can remove up to 
90% of chlorine, organic wastes, 
and trihalomethanes.

Substantiation



HEALTH AND SAFETY CLAIMS

Require a high level of substantiation

“Competent and Reliable Scientific Evidence”

Substantiation



Competent and Reliable Scientific Evidence

“tests, analyses, research, studies, or other 
evidence based upon the expertise of 
professionals in the relevant area, that has been 
conducted and evaluated in an objective manner 
by persons qualified to do so, using procedures 
generally accepted in the profession to yield 
accurate and reliable results”

Substantiation



COMPETENT AND RELIABLE 
SCIENTIFIC EVIDENCE

WHAT IT IS:
Tests, studies, other 
scientific research

Based on expertise of  
professionals in field

Objectively conducted by 
qualified people

Using procedures accepted 
as accurate

WHAT IT ISN’T:
Anecdotal evidence from 
customers

Newspaper or magazine 
articles

Sales materials from the 
manufacturer

Low return rate or 
money-back guarantee

Substantiation



Reduces the duration 
and severity of the 

common cold



“If you take these on a preventative 
basis, you may never get a cold.”
“Studies prove Cold-Eeze is effective 
on airborne allergies.”
“Give your child one before he goes 
to school.  That way, it can possibly 
prevent that child from getting a 
cold.”



“HELPS ELIMINATE 
CELLULITE” . . . “a safe, 
natural, clinically studied 
herbal supplement” . . .  
“Accept only the clinically 
researched formula.  
Cellasene.”



ANTI-TOX has been proven 
by the world-famous 
Islandia Medical Institute to 
reduce the risk of cancer.

The residents of Islandia 
eat a diet rich in the active 
ingredient in ANTI-TOX and 
their cancer rate is 25% 
less than in the U.S.

Protect your health with       
ANTI-TOX.



ISLANDIA MEDICAL INSTITUTE STUDY

20 parrots injected with 10 units of herb vs.
20 injected with tap water

Parrots who got herb had fewer tumors.



ISLANDIA MEDICAL INSTITUTE STUDY

Concerns:
• Is parrot biology like human biology?
• Does herb act same when injected vs. ingested?
• Is amount similar to what’s in product?
• Is 20 parrots large enough sample size?
• What’s tap water like in Islandia?



ISLANDIA POPULATION STUDY

Residents of eat twice as much of herb in Anti-Tox 
than Americans.

Islandia men’s hospital admission rate for cancer is 
25% less than U.S. men.



Concerns:
• Are there differences in diet and lifestyle 

between Islandia and U.S.?
• Are hospital admissions good comparison?
• What’s the cancer rate for women?

ISLANDIA POPULATION STUDY
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INTRODUCTION

Marketers love to make claims about their products and services. Why? 
Because ad claims work. Remember “The Pepsi Challenge”? (If not, check 
out Roger Enrico’s The Other Guy Blinked: How Pepsi Won the Cola Wars, 
about Pepsi’s role in the introduction of New Coke.) Or how about “4 out of 
5 dentists recommend Trident for their patients who chew gum”? And we 
all know that “Kraft Macaroni and Cheese is the Cheesiest!” Ad claims allow 
marketers to create news for their products and, more importantly, to own a 
particular position in the minds of their customers.

And the tougher, the fiercer the competition, the more likely marketers will 
look for that one claim they can advertise that will separate their brand from 
the pack. 

But, contrary to popular opinion, as a marketer you can’t just make a claim 
in your advertising. You have to be able to prove it. And that can mean 
ad claim substantiation research. Whether you are protecting yourself 
against real or potential legal challenges from competitors or regulators, 
or challenging a competitor’s claim, you need to have proof that meets 
industry and legal standards. We call ad claim substantiation research the 
simplest, most complex research you’ll ever design.

Maybe you’ve yet to run across this particular wrinkle in the marketing 
research landscape. But what if you do? As your mother told you, “An ounce 
of prevention is worth a pound of cure.” This is definitely a case where what 
you don’t know CAN hurt you!

This eBook provides a brief overview of ad claim substantiation research.  
If you want to know more, call the experts at RTi. We’re here to help.
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EXPLICIT VS. IMPLIED CLAIMS
One of the underlying principals in understanding ad claims is that they 
can be either explicit or implied. An explicit claim is made when you 
say the claim directly; an implied claim can exist when the claim isn’t 
said directly, but a reasonable person could assume it based on other 
statements you have made or images you have used. This is one of the 
biggest traps for marketers, so think very carefully about what implied 
claims might exist, even if you didn’t intend them!

For example, Bayer Healthcare challenged the claim that “Frontline Plus 
unleashes a complete killing force” with an animation shown of ninja-like 
creatures killing all the fleas and ticks on a pet within moments of the 
product’s being applied. The challenge was predicated on the fact that 
it actually takes hours for the product to reach full efficacy. The NAD 
(National Advertising Division of the Council of Better Business Bureaus) 
recommended that the advertisement be modified to avoid conveying a 
message or implication of immediate efficacy.

The most critical role for the corporate insights professional 
in an ad claim substantiation initiative is to ensure that all 
team members are on the same page regarding:

1. the claim being made, 

2.  how the essence of the claim will be communicated  
or portrayed, and

3. what research will be needed to support the claim. 

It is often difficult to nail down these considerations in 
the early phases of the creative process, but it is critical 
that the research accurately supports and exactly reflects 
the claim that is being made, which includes the way it 
is communicated or portrayed in ads or other marketing 
materials. Will your ad show adults and kids using the 
product? Then consider including adults and kids in your 
research. Is the product typically used in conjunction  
with other products? Then it may be appropriate for the 
research design to reflect that. 

USING AD CLAIMS IN MARKETING
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NON-COMPARATIVE CLAIMS
Non-comparative claims are usually about product 
performance and do not make a comparison to either 
competitive or previous products. Huggies Natural Care 
provides an example of this on their packaging when they 
claim that their diapers are “soft and sensitive.” There 
is no comparison to competitors, nor to other Huggies 
disposable diaper products. However, because “soft” 
and “sensitive” could be considered subjective sensorial 
properties, Huggies would want to consider consumer 
substantiation to support this claim.

COMPARATIVE CLAIMS
By far the most valuable and widely used claim is the comparative claim. 
Because these claims “call out” one or more competitors, they are also 
at the highest risk of being challenged and, therefore, the most likely to 
require substantiation through survey research. Comparative claims are 
further broken down into three types: 

1.  Claims of superiority over the competition – for example, Kraft’s 
Philadelphia Cream Cheese on-pack claim that “Consumers Prefer the 
Taste of Philadelphia.”

2.  Claims of parity/equality with competition – for example, Purity 
Vodka’s claim that “one in two Grey Goose drinkers prefers the taste of 
Purity Vodka” (an interesting way to communicate parity).

3.  Claims of superiority vs. yourself – for example, the Rice Krispies 
package claims, “Now helps support your child’s immunity” – the word 
“now” suggests that the formulation has been changed to deliver this 
new benefit. 

Whether explicit or implied, ad claims can be categorized 
into four broad categories:
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Determining Whether a Claim Requires 
Substantiation
Not all claims require substantiation. There is a class of 
claims called, “puffery”, which includes:

1.  Exaggerated Blustering. Have you seen the 
television ad where the tough, burly construction 
worker is floating around his construction site due 
to his super-comfy feet? Clearly, consumers would 
not believe that wearing Dr. Scholl’s Gel Inserts in 
their shoes would enable people to fly. That is clearly 
puffery. Even a claim of “Our product is GREAT!” 
(not tied to any specific benefit) is considered a 
general exaggeration and would not typically require 
consumer substantiation.

MARKET PERFORMANCE CLAIMS 
Market performance claims are typically proven by industry 
measurement or syndicated research, and not by consumer 
research. For example, if a company claims to have the top-selling 
product, industry metrics can demonstrate whether or not this is 
true. Based on sales data, Ford has long touted its “F” series as 
America’s Best-Selling Trucks.

SCIENTIFIC/TECHNICAL CLAIMS  
Scientific and technical claims are typically proven by scientific or 
technical analysis and not by consumer feedback. An interesting 
recent example is Purina Beggin’ Strips dog snacks’ on-pack claim 
that the product is “made with real bacon.” It can be technically 
proven that the product contains bacon. Interestingly, however, 
the manufacturer, Nestlē Purina, is being sued by a consumer who 
claims the advertising is misleading because of the relatively small 
amount of bacon in the product compared to what he believes is 
implied by the on-pack and advertising communications. This  
case highlights the fact that even if a claim is technically/
scientifically proven, marketers must also consider whether a 
“reasonable consumer” could walk away from the ad with a 
misleading message.
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2.  Commonly Accepted Truths.  An advertising claim 
of “Our cold beverage is refreshing” is accepted to 
be true for cold beverages, just as it is commonly 
accepted that warm beverages are comforting. No 
substantiation needed.

3.  “Many People” Statements. The claim “Many 
people love our product” is assumed to be puffery. 
Beware, however, as a simple change in the statement 
transforms it into a claim requiring substantiation: “The 
majority of people love our product” or “All people 
love our product” takes the claim out of the “many 
people” category of puffery.

The question of whether a claim is puffery is often one of 
degree: how exaggerated is the claim? That is why one 
of the most important responsibilities of the corporate or 
brand researcher is to ensure that everyone on the team is 
educated about ad claim substantiation and understands 
where the pitfalls lie. What the ad will say – and even 
what the ad will show – can make the difference between 
a successful campaign and a lawsuit.
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IT’S THE LAW!

The whole area of ad claim substantiation was born out 
of the Lanham Act in 1946. Administered by the Federal 
Trade Commission, the Lanham Act’s purpose is to prevent 
false and misleading advertising as well as to prohibit 
unfair acts or practices that cause (or are likely to cause) 
substantial injury to consumers. 

It’s not just you as the marketer, your lawyers, your 
competitors, and their lawyers who are attuned to your 
advertising. Multiple outside bodies have a role in 
maintaining truth in the advertising industry:

The National Advertising Division (NAD) of the Council of Better 
Business Bureaus handles many ad claim disputes in the U.S. and 
Canada. This board of attorneys reviews claims made in advertisements 
and can offer alternative dispute resolution with voluntary compliance 
to help marketers self-regulate and avoid costly litigation.

The Federal Trade Commission (FTC) enforces truth-in-advertising 
laws, with a special focus on advertising claims that can impact 
consumers’ health or wallets.

ASTM International is a global organization which has established 
standards for more than 12,000 products and services. These standards 
and guidelines specify how products should be tested in substantiating 
ad claims about product formulations.

Television broadcasters have long had media guidelines that dictate 
what kind of advertisements (as well as programming) can be shown 
on what screen, when. And now with the proliferation of social media 
outlets, from Facebook to blogs and beyond, advertisers are often in 
uncharted territory and learning about best practices on-the-fly.

And last, but not least, we have the courts, where 
advertisers always have the option to challenge ad claims. 
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HOW TO BULLET PROOF YOUR AD CLAIMS RESEARCH

Ad claim substantiation research is very different from other 
research initiatives in many ways, including design considerations, 
executional details, and reporting.  From a design perspective, 
recognize that the intent of the research is to prove (or disprove) 
a single claim, and that the audience for your results is not only 
internal marketing or sales staff but also internal and external 
lawyers, judges, regulators, and possibly others.  Research 
execution must have extremely rigorous quality controls built 
in; there are multiple additional checks and balances that 
should be present.  In terms of reporting, rather than the 
typical comprehensive report or presentation of insights and 
recommendations, the report should focus solely on the proof of 
the potential ad claim.

Recognize that anyone attempting to discredit your claim will 
likely focus on your expert’s credentials, your methodology, or 
both. Expect and prepare for every aspect of the research to be 
scrutinized as to what was done, why it was done that way and not 
another, and how you know the results are valid and accurate.  

At the same time, the research must be very tightly focused and 
address only the claim question, because any other questions could 
become vulnerabilities. Any questions beyond the one asked to 
substantiate the claim could potentially be used by competitors in 
an attempt to disprove or cast doubt on claim substantiation. 

For example, asking consumers two questions, “which product they 
prefer for overall taste” AND “which product they prefer for chocolate 
taste” could lead to a situation where you can substantiate one of these 
claims but not the other. If you make that one claim, a challenger could 
argue that these two sensory elements (taste and chocolate taste) are so 
inextricably linked that if you can’t substantiate both, you can’t use either 
one. Don’t fall into this trap! Most ad claim substantiation research asks 
only one question! 
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CASE STUDY:  
PASTA SAUCE AND QUESTIONABLE CHOICES

You probably remember the Prego television advertising 
campaign featuring their taste test against Ragú (made 
by Unilever).

Announcer:  “Even Ragú users choose Prego Traditional over 
Ragú Traditional.”

Visual:  Woman consumer prefers Prego Traditional over Ragú 
Traditional sauce.

Woman consumer:  “Prego? But I buy Ragú. I wonder what other 
questionable choices I’ve made?”

Visual:  The woman makes a series of bad hairstyle choices.

Announcer: “Choose taste. Choose Prego.”

Unilever challenged Campbell’s (maker of Prego), saying 
that the ads communicated an implied claim that Ragú 
users prefer the taste of ALL Prego pasta sauces over 
ALL Ragú pasta sauces. 
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Because Prego’s taste test research compared only one variety, 
Prego Traditional sauce vs. Ragú Old World Style Traditional 
sauce, Unilever alleged the research could not substantiate the 
implied “line” claim.

Campbell’s responded with an online survey of 324 national 
consumers showing that “only 11%” believed that the claim 
referred to preference for the entire line of pasta sauces from 
Prego and Ragú.

The NAD ruled that these findings strongly suggested that very 
few respondents actually interpreted the claim to mean only 
those two specific products vs. a claim pertaining to the entire 
line of sauces.

NAD also found that the copy used general brand references 
and did not adequately limit the applicability of the claim to 
a single variety. Even Prego’s disclosure (“Prego Traditional 
vs. Ragú Old World Style Traditional”) was insufficient to 
establish that only two varieties were being compared, as it 
appeared only very briefly in the 30-second commercial. All of 
this resulted in the NAD finding that Prego communicated an 
unsubstantiated line claim message and recommended that 
Prego modify or discontinue its ads.

However, the NAD of the Council of Better Business Bureaus was not 
impressed with Campbell’s survey research:

•  The NAD pointed out that respondents repeatedly referred to 
“Prego” and “Ragú” and not Prego Traditional or Ragú Old World 
Style Traditional. 

•  Additionally, only about 1% of survey respondents used terms such 
as “product” or “sauce” and only three respondents referenced by 
name one of the sauces compared. 

•  Further, the NAD criticized the question formats used by Prego 
and concluded the survey was not sufficiently reliable.
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FIVE CRITICAL TIPS FOR BETTER AD CLAIM 
SUBSTANTIATION RESEARCH

The devil is in the details. Never was that saying truer than 
when talking about ad claim substantiation research. Each 
regulatory body, each industry, each type of claim has its 
own set of standards and best practices that can make the 
difference between successfully supporting (or challenging) a 
claim and having your ad pulled and your investment wasted. 
Here are some important tips that we have learned through 
decades of conducting ad claim substantiation research.

1.  Team Alignment. Conduct the research before the 
advertising is finalized, making sure all stakeholders are 
aligned on the desired claim and how it will be executed 
so the research can be designed appropriately. 

2.  The Right Sample. Make sure you are talking to the 
right consumers. A general rule of thumb is to use the 
broadest relevant target for your sample, which is often 
category users. 

3.  The Right Context. Depending on your product or 
service, context can also make a difference. Take into 
account seasonality (e.g., test hot chocolate in winter, 
ice cream in summer), raw materials variability, product 
packaging, product availability, and product age. And 
not just for your product, but for your competitors’  
as well.

4.  Geography Matters. If the claim supports a national 
advertising campaign, your research must properly 
represent the U.S. population. However, if you want to 
say that people in New Jersey prefer your brand, sample 
sufficient people in New Jersey. 

5.  Everything’s Discoverable. “Discovery” is the phase in 
a lawsuit when both sides share their evidence. As you 
work through your claim substantiation research, keep in 
mind that everything could become part of a lawsuit.



SUMMARY

Did we mention that we call this the 
simplest, most complex research you’ll 
ever design? 

This eBook has only scratched the surface of what we 
know today. And don’t even get us started on what 
we’ll need to know tomorrow as social media and other 
digital marketing campaigns stretch consumers’ ability to 
separate fact and fiction.

RTi has had extensive experience with ad claim 
substantiation research. Our experts stay on top of 
changes in case law and best practices. If you have 
questions – give us a call. We know the answer!

383 Main Avenue, Suite 706
Norwalk, CT 06851-1543 

tel: 203-324-2420 
email: info@RTiResearch.com

rtiresearch.com
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THERE’S STILL A LOT TO LEARN! 
•  What competitors should you include?  
•  What if the consumer needs to use the product over time?  
•  How can we make sure the product tested is consistent?  

For more tips, watch our webinar: Legal Claims Substantiation Research. 

http://rtiresearch.com/
http://www.rtiresearch.com/news-and-webinars/webinars/291-legal-claims-substantiation-research
mailto:info@RTiResearch.com
http://rtiresearch.com/
https://www.linkedin.com/company/rti-research
https://twitter.com/rtiresearch
https://www.youtube.com/channel/UCY-fxGvuGW1w8XVsnDUtR9g


Most sensory claims are about perception

and preference. Advertisers and marketers

typically use data from sensory research to

market existing products or develop new

product lines, to support claims such as

“perfectly seasoned,” “eliminates tough

odors,” “now with better taste”, or “gives you

touchable soft hair.” 

Generating reliable measures of how consumers feel about a product, or how

they feel a product ranks against a competitor, requires advertisers to conduct

sensory research using consumer surveys or trained sensory panels. This

research can also be useful if a competitor brings a complaint about the

advertising to a regulatory agency, or a regulatory agency requires substantiation

of consumer perception claims. Being well-prepared with research that supports

your sensory claims is therefore critical to the success of your advertising or

marketing campaign or product launch. 

Types of Sensory Claims  

How Consumer Surveys
Help Identify the Correct

Sensory Claims
May 22, 2023 by Dr. Molly Spencer

https://mmrstrategy.com/author/molly-spencer/


Sensory advertising claims can be broken into comparative and non-comparative

claims. Comparative claims are statements that draw comparisons between the

product and one or more other brands; they may be further broken down into

superiority claims and parity claims. Superiority claims claim that one product is

better than the other, while parity claims say that one product is just as good as

another. For example, a parity claim regarding a cleaning product would be

something like “Our product cleans as well as Brand X,” whereas a superiority

claim would be “Our product cleans better than Brand X.” A non-comparative

sensory claim makes a statement about the sensory attributes of a product, such

as “dry touch” sunscreen. 

Comparative and non-comparative claims can also be classi�ed as hedonic or

perception claims. Hedonic claims are emotional and subjective, relating to

overall liking and preference. “Great taste” or “tasty” are examples of hedonic

non-comparative claims, whereas “preferred over Brand X” is a hedonic

comparative claim. A perception claim, on the other hand, is related to the

perception or the perceived intensity of the product. “Meaty” or “crispy” would be

non-comparative perception claims and “more chocolatey” would be a

comparative perception claim. 

Each of these claim types may be challenged by a regulator or a competitor. To

avoid coming before a court or regulatory body–or to set themselves up for

success if they do end up in a dispute–advertisers should substantiate sensory

claims with reliable, valid, and relevant scienti�c research.

Sensory Data That Supports Certain Claims  

Most sensory claims are substantiated using data derived from consumer

surveys, trained sensory panels, and/or laboratory instruments.  Consumer data,



which is collected from untrained consumers, may be used to support both

hedonic and perception claims. Analytical data from trained panelists or

laboratory instruments is typically used to support perception claims. 

Advertisers can use consumer data to:

Unlike consumer data, trained panel data is collected from a panel of people with

extensive training in sensory perception of particular product categories. Unlike

ordinary consumers, trained panelists are not used to provide preference or

liking measures; rather, they can identify and quantify the sensory attributes of a

product.

Data obtained from a trained sensory panel could be used to: 

identify (broadly) which sensory attributes to highlight in consumer

perception claims for a product.

substantiate a comparative superiority claim, such as “seven out of ten kids

prefer Brand Y to Brand Z.”

substantiate a claim that the product has been improved in some way, such

as “New and improved formula!”

substantiate a perception claim, such as “Now crispier!” 

compare a current version to a previous version or to competitors: “Sweeter

than brand X.”

identify sensory attributes, such as sweet, salty, or �oral.

identify and quantify overall di�erences in products, including speci�c

di�erences in appearance, aroma, �avor, texture, and mouthfeel, as well as

di�erences in intensity over time. 



One of the challenges advertisers and marketers may face, either before or after

sensory research is conducted, is how to properly substantiate claims using

sensory research. Collecting the data properly is an essential part of conducting

reliable sensory claims research that can stand up to a challenge. MMR Strategy

Group conducts sensory research that adheres to the Standard Guide for

Sensory Claim Substantiation from ASTM International (formerly the American

Society for Testing and Materials). If you require sensory claim substantiation,

please contact MMR Strategy Group for a consultation.

Share this post: 

https://mmrstrategy.com/sensory-research/
https://mmrstrategy.com/sensory-claims/
https://mmrstrategy.com/sensory-claims/
https://mmrstrategy.com/sensory-claims/
https://mmrstrategy.com/contact-us/
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I. Introduction
Statistical assessments are prominent in many kinds of legal cases, including 
antitrust, employment discrimination, toxic torts, and voting rights cases.1 This 
reference guide describes the elements of statistical reasoning. We hope the expla-
nations will help judges and lawyers to understand statistical terminology, to see 
the strengths and weaknesses of statistical arguments, and to apply relevant legal 
doctrine. The guide is organized as follows:

•	 Section	 I	 provides	 an	 overview	 of	 the	 field,	 discusses	 the	 admissibility	
of statistical studies, and offers some suggestions about procedures that 
encourage the best use of statistical evidence.

•	 Section	II	addresses	data	collection	and	explains	why	the	design	of	a	study	
is the most important determinant of its quality. This section compares 
experiments with observational studies and surveys with censuses, indicat-
ing when the various kinds of study are likely to provide useful results.

•	 Section	III	discusses	the	art	of	summarizing	data.	This	section	considers	the	
mean, median, and standard deviation. These are basic descriptive statistics, 
and most statistical analyses use them as building blocks. This section also 
discusses patterns in data that are brought out by graphs, percentages, and 
tables.

•	 Section	IV	describes	the	logic	of	statistical	inference,	emphasizing	founda-
tions and disclosing limitations. This section covers estimation, standard 
errors and confidence intervals, p-values, and hypothesis tests. 

•	 Section	V	 shows	how	 associations	 can	 be	 described	by	 scatter	 diagrams,	
correlation coefficients, and regression lines. Regression is often used to 
infer causation from association. This section explains the technique, indi-
cating the circumstances under which it and other statistical models are 
likely to succeed—or fail.

•	 An	appendix	provides	some	technical	details.	
•	 The	glossary	defines	statistical	terms	that	may	be	encountered	in	litigation.

1. See generally Statistical Science in the Courtroom (Joseph L. Gastwirth ed., 2000); Statistics 
and the Law (Morris H. DeGroot et al. eds., 1986); National Research Council, The Evolving Role 
of Statistical Assessments as Evidence in the Courts (Stephen E. Fienberg ed., 1989) [hereinafter The 
Evolving Role of Statistical Assessments as Evidence in the Courts]; Michael O. Finkelstein & Bruce 
Levin, Statistics for Lawyers (2d ed. 2001); 1 & 2 Joseph L. Gastwirth, Statistical Reasoning in Law 
and Public Policy (1988); Hans Zeisel & David Kaye, Prove It with Figures: Empirical Methods in 
Law and Litigation (1997).
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A. Admissibility and Weight of Statistical Studies
Statistical studies suitably designed to address a material issue generally will be 
admissible under the Federal Rules of Evidence. The hearsay rule rarely is a 
 serious barrier to the presentation of statistical studies, because such studies may 
be offered to explain the basis for an expert’s opinion or may be admissible under 
the learned treatise exception to the hearsay rule.2 Because most statistical methods 
relied on in court are described in textbooks or journal articles and are capable 
of producing useful results when properly applied, these methods generally satisfy 
important aspects of the “scientific knowledge” requirement in Daubert v. Merrell 
Dow Pharmaceuticals, Inc.3 Of course, a particular study may use a method that is 
entirely appropriate but that is so poorly executed that it should be inadmissible 
under Federal Rules of Evidence 403 and 702.4 Or, the method may be inappro-
priate for the problem at hand and thus lack the “fit” spoken of in Daubert.5 Or 
the study might rest on data of the type not reasonably relied on by statisticians or 
substantive experts and hence run afoul of Federal Rule of Evidence 703. Often, 
however, the battle over statistical evidence concerns weight or sufficiency rather 
than admissibility.

B. Varieties and Limits of Statistical Expertise
For convenience, the field of statistics may be divided into three subfields: prob-
ability theory, theoretical statistics, and applied statistics. Probability theory is the 
mathematical study of outcomes that are governed, at least in part, by chance. 
Theoretical statistics is about the properties of statistical procedures, including 
error rates; probability theory plays a key role in this endeavor. Applied statistics 
draws on both of these fields to develop techniques for collecting or analyzing 
particular types of data.

2. See generally 2 McCormick on Evidence §§ 321, 324.3 (Kenneth S. Broun ed., 6th ed. 2006). 
Studies published by government agencies also may be admissible as public records. Id. § 296.

3. 509 U.S. 579, 589–90 (1993).
4. See Kumho Tire Co. v. Carmichael, 526 U.S. 137, 152 (1999) (suggesting that the trial court 

should “make certain that an expert, whether basing testimony upon professional studies or personal 
experience, employs in the courtroom the same level of intellectual rigor that characterizes the practice 
of an expert in the relevant field.”); Malletier v. Dooney & Bourke, Inc., 525 F. Supp. 2d 558, 562–63 
(S.D.N.Y. 2007) (“While errors in a survey’s methodology usually go to the weight accorded to the 
conclusions rather than its admissibility, . . . ‘there will be occasions when the proffered survey is so 
flawed as to be completely unhelpful to the trier of fact.’”) (quoting AHP Subsidiary Holding Co. v. 
Stuart Hale Co., 1 F.3d 611, 618 (7th Cir.1993)).

5. Daubert, 509 U.S. at 591; Anderson v. Westinghouse Savannah River Co., 406 F.3d 248 (4th 
Cir. 2005) (motion to exclude statistical analysis that compared black and white employees without 
adequately taking into account differences in their job titles or positions was properly granted under 
Daubert); Malletier, 525 F. Supp. 2d at 569 (excluding a consumer survey for “a lack of fit between the 
survey’s questions and the law of dilution” and errors in the execution of the survey).
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Statistical expertise is not confined to those with degrees in statistics. Because 
statistical reasoning underlies many kinds of empirical research, scholars in a 
 variety of fields—including biology, economics, epidemiology, political science, 
and psychology—are exposed to statistical ideas, with an emphasis on the methods 
most important to the discipline.

Experts who specialize in using statistical methods, and whose professional 
careers demonstrate this orientation, are most likely to use appropriate procedures 
and correctly interpret the results. By contrast, forensic scientists often lack basic 
information about the studies underlying their testimony. State v. Garrison6 illus-
trates the problem. In this murder prosecution involving bite mark evidence, a 
dentist was allowed to testify that “the probability factor of two sets of teeth being 
identical in a case similar to this is, approximately, eight in one million,” even 
though “he was unaware of the formula utilized to arrive at that figure other than 
that it was ‘computerized.’”7

At the same time, the choice of which data to examine, or how best to model 
a particular process, could require subject matter expertise that a statistician lacks. 
As a result, cases involving statistical evidence frequently are (or should be) “two 
expert” cases of interlocking testimony. A labor economist, for example, may 
supply a definition of the relevant labor market from which an employer draws 
its employees; the statistical expert may then compare the race of new hires to 
the racial composition of the labor market. Naturally, the value of the statistical 
analysis depends on the substantive knowledge that informs it.8

C. Procedures That Enhance Statistical Testimony

1. Maintaining professional autonomy

Ideally, experts who conduct research in the context of litigation should proceed 
with the same objectivity that would be required in other contexts. Thus, experts 
who testify (or who supply results used in testimony) should conduct the analysis 
required to address in a professionally responsible fashion the issues posed by the 
litigation.9 Questions about the freedom of inquiry accorded to testifying experts, 

6. 585 P.2d 563 (Ariz. 1978).
7. Id. at 566, 568. For other examples, see David H. Kaye et al., The New Wigmore: A Treatise 

on Evidence: Expert Evidence § 12.2 (2d ed. 2011).
8. In Vuyanich v. Republic National Bank, 505 F. Supp. 224, 319 (N.D. Tex. 1980), vacated, 723 

F.2d 1195 (5th Cir. 1984), defendant’s statistical expert criticized the plaintiffs’ statistical model for an 
implicit, but restrictive, assumption about male and female salaries. The district court trying the case 
accepted the model because the plaintiffs’ expert had a “very strong guess” about the assumption, and 
her expertise included labor economics as well as statistics. Id. It is doubtful, however, that economic 
knowledge sheds much light on the assumption, and it would have been simple to perform a less 
restrictive analysis.

9. See The Evolving Role of Statistical Assessments as Evidence in the Courts, supra note 1, at 
164 (recommending that the expert be free to consult with colleagues who have not been retained 
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as well as the scope and depth of their investigations, may reveal some of the 
limitations to the testimony.

2. Disclosing other analyses

Statisticians analyze data using a variety of methods. There is much to be said for 
looking at the data in several ways. To permit a fair evaluation of the analysis that 
is eventually settled on, however, the testifying expert can be asked to explain 
how that approach was developed. According to some commentators, counsel 
who know of analyses that do not support the client’s position should reveal them, 
rather than presenting only favorable results.10

3. Disclosing data and analytical methods before trial

The collection of data often is expensive and subject to errors and omissions. 
Moreover, careful exploration of the data can be time-consuming. To minimize 
debates at trial over the accuracy of data and the choice of analytical techniques, 
pretrial discovery procedures should be used, particularly with respect to the qual-
ity of the data and the method of analysis.11

II. How Have the Data Been Collected?
The interpretation of data often depends on understanding “study design”—the 
plan for a statistical study and its implementation.12 Different designs are suited to 
answering different questions. Also, flaws in the data can undermine any statistical 
analysis, and data quality is often determined by study design.

In many cases, statistical studies are used to show causation. Do food additives 
cause cancer? Does capital punishment deter crime? Would additional disclosures 

by any party to the litigation and that the expert receive a letter of engagement providing for these 
and other safeguards).

10. Id. at 167; cf. William W. Schwarzer, In Defense of “Automatic Disclosure in Discovery,” 27 
Ga. L. Rev. 655, 658–59 (1993) (“[T]he lawyer owes a duty to the court to make disclosure of core 
information.”). The National Research Council also recommends that “if a party gives statistical data 
to different experts for competing analyses, that fact be disclosed to the testifying expert, if any.” The 
Evolving Role of Statistical Assessments as Evidence in the Courts, supra note 1, at 167.

11. See The Special Comm. on Empirical Data in Legal Decision Making, Recommendations 
on Pretrial Proceedings in Cases with Voluminous Data, reprinted in The Evolving Role of Statistical 
Assessments as Evidence in the Courts, supra note 1, app. F; see also David H. Kaye, Improving Legal 
Statistics, 24 Law & Soc’y Rev. 1255 (1990).

12. For introductory treatments of data collection, see, for example, David Freedman et al., 
Statistics (4th ed. 2007); Darrell Huff, How to Lie with Statistics (1993); David S. Moore & William 
I. Notz, Statistics: Concepts and Controversies (6th ed. 2005); Hans Zeisel, Say It with Figures (6th 
ed. 1985); Zeisel & Kaye, supra note 1.
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in a securities prospectus cause investors to behave differently? The design of 
 studies to investigate causation is the first topic of this section.13

Sample data can be used to describe a population. The population is the 
whole class of units that are of interest; the sample is the set of units chosen for 
detailed study. Inferences from the part to the whole are justified when the sample 
is representative. Sampling is the second topic of this section.

Finally, the accuracy of the data will be considered. Because making and 
recording measurements is an error-prone activity, error rates should be assessed 
and the likely impact of errors considered. Data quality is the third topic of this 
section.

A. Is the Study Designed to Investigate Causation?

1. Types of studies

When causation is the issue, anecdotal evidence can be brought to bear. So can 
observational studies or controlled experi ments. Anecdotal reports may be of 
value, but they are ordinarily more helpful in generating lines of inquiry than in 
proving causation.14 Observational studies can establish that one factor is associ-

13. See also Michael D. Green et al., Reference Guide on Epidemiology, Section V, in this 
manual; Joseph Rodricks, Reference Guide on Exposure Science, Section E, in this manual.

14. In medicine, evidence from clinical practice can be the starting point for discovery of 
cause-and-effect relationships. For examples, see David A. Freedman, On Types of Scientific Enquiry, in 
The Oxford Handbook of Political Methodology 300 (Janet M. Box-Steffensmeier et al. eds., 2008). 
Anecdotal evidence is rarely definitive, and some courts have suggested that attempts to infer causa-
tion from anecdotal reports are inadmissible as unsound methodology under Daubert v. Merrell Dow 
Pharmaceuticals, Inc., 509 U.S. 579 (1993). See, e.g., McClain v. Metabolife Int’l, Inc., 401 F.3d 1233, 
1244 (11th Cir. 2005) (“simply because a person takes drugs and then suffers an injury does not show 
causation. Drawing such a conclusion from temporal relationships leads to the blunder of the post hoc 
ergo propter hoc fallacy.”); In re Baycol Prods. Litig., 532 F. Supp. 2d 1029, 1039–40 (D. Minn. 2007) 
(excluding a meta-analysis based on reports to the Food and Drug Administration of adverse events); 
Leblanc v. Chevron USA Inc., 513 F. Supp. 2d 641, 650 (E.D. La. 2007) (excluding plaintiffs’ experts’ 
opinions that benzene causes myelofibrosis because the causal hypothesis “that has been generated by 
case reports . . . has not been confirmed by the vast majority of epidemiologic studies of workers being 
exposed to benzene and more generally, petroleum products.”), vacated, 275 Fed. App’x. 319 (5th 
Cir. 2008) (remanding for consideration of newer government report on health effects of benzene); 
cf. Matrixx Initiatives, Inc. v. Siracusano, 131 S. Ct. 1309, 1321 (2011) (concluding that adverse event 
reports combined with other information could be of concern to a reasonable investor and therefore 
subject to a requirement of disclosure under SEC Rule 10b-5, but stating that “the mere existence of 
reports of adverse events . . . says nothing in and of itself about whether the drug is causing the adverse 
events”). Other courts are more open to “differential  diagnoses” based primarily on timing. E.g., Best v. 
Lowe’s Home Ctrs., Inc., 563 F.3d 171 (6th Cir. 2009) (reversing the exclusion of a physician’s opinion 
that exposure to propenyl chloride caused a man to lose his sense of smell because of the timing in this 
one case and the physician’s inability to attribute the change to anything else); Kaye et al., supra note 
7, §§ 8.7.2 & 12.5.1. See also Matrixx Initiatives, supra, at 1322 (listing “a temporal relationship” in a 
single patient as one indication of “a reliable causal link”).
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ated with another, but work is needed to bridge the gap between association and 
causation. Randomized controlled experiments are ideally suited for demonstrat-
ing causation.

Anecdotal evidence usually amounts to reports that events of one kind are 
followed by events of another kind. Typically, the reports are not even sufficient 
to show association, because there is no comparison group. For example, some 
children who live near power lines develop leukemia. Does exposure to electrical 
and magnetic fields cause this disease? The anecdotal evidence is not compelling 
because leukemia also occurs among children without exposure.15 It is necessary 
to compare disease rates among those who are exposed and those who are not. 
If exposure causes the disease, the rate should be higher among the exposed and 
lower among the unexposed. That would be association.

The next issue is crucial: Exposed and unexposed people may differ in ways 
other than the exposure they have experienced. For example, children who live 
near power lines could come from poorer families and be more at risk from other 
environmental hazards. Such differences can create the appearance of a cause-and-
effect relationship. Other differences can mask a real relationship. Cause-and-effect 
relationships often are quite subtle, and carefully designed studies are needed to 
draw valid conclusions.

An epidemiological classic makes the point. At one time, it was thought that 
lung cancer was caused by fumes from tarring the roads, because many lung cancer 
patients lived near roads that recently had been tarred. This is anecdotal evidence. 
But the argument is incomplete. For one thing, most people—whether exposed 
to asphalt fumes or unexposed—did not develop lung cancer. A comparison of 
rates was needed. The epidemiologists found that exposed persons and unexposed 
persons suffered from lung cancer at similar rates: Tar was probably not the causal 
agent. Exposure to cigarette smoke, however, turned out to be strongly associated 
with lung cancer. This study, in combination with later ones, made a compelling 
case that smoking cigarettes is the main cause of lung cancer.16

A good study design compares outcomes for subjects who are exposed to 
some factor (the treatment group) with outcomes for other subjects who are 

15. See National Research Council, Committee on the Possible Effects of Electromagnetic Fields 
on Biologic Systems (1997); Zeisel & Kaye, supra note 1, at 66–67. There are problems in measur-
ing exposure to electromagnetic fields, and results are inconsistent from one study to another. For 
such reasons, the epidemiological evidence for an effect on health is inconclusive. National Research 
Council, supra; Zeisel & Kaye, supra; Edward W. Campion, Power Lines, Cancer, and Fear, 337 New 
Eng. J. Med. 44 (1997) (editorial); Martha S. Linet et al., Residential Exposure to Magnetic Fields and Acute 
Lymphoblastic Leukemia in Children, 337 New Eng. J. Med. 1 (1997); Gary Taubes, Magnetic Field-Cancer 
Link: Will It Rest in Peace?, 277 Science 29 (1997) (quoting various epidemiologists).

16. Richard Doll & A. Bradford Hill, A Study of the Aetiology of Carcinoma of the Lung, 2 Brit. 
Med. J. 1271 (1952). This was a matched case-control study. Cohort studies soon followed. See 
Green et al., supra note 13. For a review of the evidence on causation, see 38 International Agency 
for Research on Cancer (IARC), World Health Org., IARC Monographs on the Evaluation of the 
Carcinogenic Risk of Chemicals to Humans: Tobacco Smoking (1986).
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not exposed (the control group). Now there is another important distinction to 
be made—that between controlled experiments and observational studies. In a 
controlled experiment, the investigators decide which subjects will be exposed 
and which subjects will go into the control group. In observational studies, by 
contrast, the subjects themselves choose their exposures. Because of self-selection, 
the treatment and control groups are likely to differ with respect to influential 
factors other than the one of primary interest. (These other factors are called lurk-
ing variables or confounding variables.)17 With the health effects of power lines, 
family background is a possible confounder; so is exposure to other hazards. Many 
confounders have been proposed to explain the association between smoking and 
lung cancer, but careful epidemiological studies have ruled them out, one after 
the other.

Confounding remains a problem to reckon with, even for the best observa-
tional research. For example, women with herpes are more likely to develop cer-
vical cancer than other women. Some investigators concluded that herpes caused 
cancer: In other words, they thought the association was causal. Later research 
showed that the primary cause of cervical cancer was human papilloma virus 
(HPV). Herpes was a marker of sexual activity. Women who had multiple sexual 
partners were more likely to be exposed not only to herpes but also to HPV. 
The association between herpes and cervical cancer was due to other variables.18

What are “variables?” In statistics, a variable is a characteristic of units in a 
study. With a study of people, the unit of analysis is the person. Typical vari-
ables include income (dollars per year) and educational level (years of schooling 
completed): These variables describe people. With a study of school districts, the 
unit of analysis is the district. Typical variables include average family income of 
district residents and average test scores of students in the district: These variables 
describe school districts.

When investigating a cause-and-effect relationship, the variable that repre-
sents the effect is called the dependent variable, because it depends on the causes. 
The variables that represent the causes are called independent variables. With a 
study of smoking and lung cancer, the independent variable would be smoking 
(e.g., number of cigarettes per day), and the dependent variable would mark the 
presence or absence of lung cancer. Dependent variables also are called outcome 
variables or response variables. Synonyms for independent variables are risk factors, 
predictors, and explanatory variables.

17. For example, a confounding variable may be correlated with the independent variable and 
act causally on the dependent variable. If the units being studied differ on the independent variable, 
they are also likely to differ on the confounder. The confounder—not the independent variable—could 
therefore be responsible for differences seen on the dependent variable.

18. For additional examples and further discussion, see Freedman et al., supra note 12, at 12–28, 
150–52; David A. Freedman, From Association to Causation: Some Remarks on the History of Statistics, 14 
Stat. Sci. 243 (1999). Some studies find that herpes is a “cofactor,” which increases risk among women 
who are also exposed to HPV. Only certain strains of HPV are carcinogenic.
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2. Randomized controlled experiments

In randomized controlled experiments, investigators assign subjects to treatment 
or control groups at random. The groups are therefore likely to be comparable, 
except for the treatment. This minimizes the role of confounding. Minor imbal-
ances will remain, due to the play of random chance; the likely effect on study 
results can be assessed by statistical techniques.19 The bottom line is that causal 
inferences based on well-executed randomized experiments are generally more 
secure than inferences based on well-executed observational studies.

The following example should help bring the discussion together. Today, we 
know that taking aspirin helps prevent heart attacks. But initially, there was some 
controversy. People who take aspirin rarely have heart attacks. This is anecdotal 
evidence for a protective effect, but it proves almost nothing. After all, few people 
have frequent heart attacks, whether or not they take aspirin regularly. A good 
study compares heart attack rates for two groups: people who take aspirin (the 
treatment group) and people who do not (the controls). An observational study 
would be easy to do, but in such a study the aspirin-takers are likely to be dif-
ferent from the controls. Indeed, they are likely to be sicker—that is why they 
are taking aspirin. The study would be biased against finding a protective effect. 
Randomized experiments are harder to do, but they provide better evidence. It 
is the experiments that demonstrate a protective effect.20

In summary, data from a treatment group without a control group generally 
reveal very little and can be misleading. Comparisons are essential. If subjects are 
assigned to treatment and control groups at random, a difference in the outcomes 
between the two groups can usually be accepted, within the limits of statistical 
error (infra Section IV), as a good measure of the treatment effect. However, if 
the groups are created in any other way, differences that existed before treatment 
may contribute to differences in the outcomes or mask differences that otherwise 
would become manifest. Observational studies succeed to the extent that the treat-
ment and control groups are comparable—apart from the treatment.

3. Observational studies

The bulk of the statistical studies seen in court are observational, not experi-
mental. Take the question of whether capital punishment deters murder. To 
conduct a randomized controlled experiment, people would need to be assigned 
randomly to a treatment group or a control group. People in the treatment 
group would know they were subject to the death penalty for murder; the 

19. Randomization of subjects to treatment or control groups puts statistical tests of significance 
on a secure footing. Freedman et al., supra note 12, at 503–22, 545–63; see infra Section IV.

20. In other instances, experiments have banished strongly held beliefs. E.g., Scott M. Lippman 
et al., Effect of Selenium and Vitamin E on Risk of Prostate Cancer and Other Cancers: The Selenium 
and Vitamin E Cancer Prevention Trial (SELECT), 301 JAMA 39 (2009).
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controls would know that they were exempt. Conducting such an experiment 
is not possible. 

Many studies of the deterrent effect of the death penalty have been conducted, 
all observational, and some have attracted judicial attention. Researchers have cata-
logued differences in the incidence of murder in states with and without the death 
penalty and have analyzed changes in homicide rates and execution rates over the 
years. When reporting on such observational studies, investigators may speak of 
“control groups” (e.g., the states without capital punishment) or claim they are “con-
trolling for” confounding variables by statistical methods.21 However, association is 
not causation. The causal inferences that can be drawn from analysis of observational 
data—no matter how complex the statistical technique—usually rest on a foundation 
that is less secure than that provided by randomized controlled experiments.

That said, observational studies can be very useful. For example, there is strong 
observational evidence that smoking causes lung cancer (supra Section II.A.1). Gen-
erally, observational studies provide good evidence in the following circumstances:

•	 The	association	is	seen	in	studies	with	different	designs,	on	different	kinds	of	
subjects, and done by different research groups.22 That reduces the chance 
that the association is due to a defect in one type of study, a peculiarity in 
one group of subjects, or the idiosyncrasies of one research group.

•	 The	association	holds	when	effects	of	confounding	variables	are	taken	into	
account by appropriate methods, for example, comparing smaller groups 
that are relatively homogeneous with respect to the confounders.23

•	 There	is	a	plausible	explanation	for	the	effect	of	the	independent	variable;	
alternative explanations in terms of confounding should be less plausible 
than the proposed causal link.24 

21. A procedure often used to control for confounding in observational studies is regression 
analysis. The underlying logic is described infra Section V.D and in Daniel L. Rubinfeld, Reference 
Guide on Multiple Regression, Section II, in this manual. But see Richard A. Berk, Regression 
Analysis: A Constructive Critique (2004); Rethinking Social Inquiry: Diverse Tools, Shared Standards 
(Henry E. Brady & David Collier eds., 2004); David A. Freedman, Statistical Models: Theory and 
Practice (2005); David A. Freedman, Oasis or Mirage, Chance, Spring 2008, at 59.

22. For example, case-control studies are designed one way and cohort studies another, with 
many variations. See, e.g., Leon Gordis, Epidemiology (4th ed. 2008); supra note 16.

23. The idea is to control for the influence of a confounder by stratification—making compari-
sons separately within groups for which the confounding variable is nearly constant and therefore has 
little influence over the variables of primary interest. For example, smokers are more likely to get lung 
cancer than nonsmokers. Age, gender, social class, and region of residence are all confounders, but 
controlling for such variables does not materially change the relationship between smoking and cancer 
rates. Furthermore, many different studies—of different types and on different populations—confirm 
the causal link. That is why most experts believe that smoking causes lung cancer and many other 
diseases. For a review of the literature, see International Agency for Research on Cancer, supra note 16.

24. A. Bradford Hill, The Environment and Disease: Association or Causation?, 58 Proc. Royal 
Soc’y Med. 295 (1965); Alfred S. Evans, Causation and Disease: A Chronological Journey 187 (1993). 
Plausibility, however, is a function of time and circumstances.
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Thus, evidence for the causal link does not depend on observed associations alone.
Observational studies can produce legitimate disagreement among experts, 

and there is no mechanical procedure for resolving such differences of opinion. 
In the end, deciding whether associations are causal typically is not a matter of 
statistics alone, but also rests on scientific judgment. There are, however, some 
basic questions to ask when appraising causal inferences based on empirical studies:

•	 Was	 there	 a	 control	 group?	Unless	 comparisons	 can	be	made,	 the	 study	
has little to say about causation.

•	 If	 there	 was	 a	 control	 group,	 how	 were	 subjects	 assigned	 to	 treatment	
or control: through a process under the control of the investigator (a 
controlled experiment) or through a process outside the control of the 
investigator (an observational study)?

•	 If	the	study	was	a	controlled	experiment,	was	the	assignment	made	using	
a chance mechanism (randomization), or did it depend on the judgment 
of the investigator?

If the data came from an observational study or a nonrandomized controlled 
experiment,

•	 How	did	the	subjects	come	to	be	in	treatment	or	in	control	groups?
	•	 Are	the	treatment	and	control	groups	comparable?
	•	 If	not,	what	adjustments	were	made	to	address	confounding?
	•	 Were	the	adjustments	sensible	and	sufficient?25

4. Can the results be generalized?

Internal validity is about the specifics of a particular study: Threats to internal valid-
ity include confounding and chance differences between treatment and control 
groups. External validity is about using a particular study or set of studies to reach 
more general conclusions. A careful randomized controlled experiment on a large 
but unrepresentative group of subjects will have high internal validity but low 
external validity.

Any study must be conducted on certain subjects, at certain times and places, 
and using certain treatments. To extrapolate from the conditions of a study to 
more general conditions raises questions of external validity. For example,  studies 
suggest that definitions of insanity given to jurors influence decisions in cases 
of incest. Would the definitions have a similar effect in cases of murder? Other 
 studies indicate that recidivism rates for ex-convicts are not affected by provid-

25. Many courts have noted the importance of confounding variables. E.g., People Who Care v. 
Rockford Bd. of Educ., 111 F.3d 528, 537–38 (7th Cir. 1997) (educational achievement); Hollander 
v. Sandoz Pharms. Corp., 289 F.3d 1193, 1213 (10th Cir. 2002) (stroke); In re Proportionality Review 
Project (II), 757 A.2d 168 (N.J. 2000) (capital sentences).
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ing them with temporary financial support after release. Would similar results be 
obtained if conditions in the labor market were different?

Confidence in the appropriateness of an extrapolation cannot come from 
the experiment itself. It comes from knowledge about outside factors that would 
or would not affect the outcome.26 Sometimes, several studies, each having dif-
ferent limitations, all point in the same direction. This is the case, for example, 
with  studies indicating that jurors who approve of the death penalty are more 
likely to convict in a capital case.27 Convergent results support the validity of 
generalizations.

B. Descriptive Surveys and Censuses
We now turn to a second topic—choosing units for study. A census tries to measure 
some characteristic of every unit in a population. This is often impractical. Then 
investigators use sample surveys, which measure characteristics for only part of a 
population. The accuracy of the information collected in a census or survey depends 
on how the units are selected for study and how the measurements are made.28 

1. What method is used to select the units?

By definition, a census seeks to measure some characteristic of every unit in 
a whole population. It may fall short of this goal, in which case one must ask 

26. Such judgments are easiest in the physical and life sciences, but even here, there are prob-
lems. For example, it may be difficult to infer human responses to substances that affect animals. First, 
there are often inconsistencies across test species: A chemical may be carcinogenic in mice but not 
in rats. Extrapolation from rodents to humans is even more problematic. Second, to get measurable 
effects in animal experiments, chemicals are administered at very high doses. Results are  extrapolated—
using mathematical models—to the very low doses of concern in humans. However, there are many 
dose–response models to use and few grounds for choosing among them. Generally, different models 
produce radically different estimates of the “virtually safe dose” in humans. David A. Freedman & 
Hans Zeisel, From Mouse to Man: The Quantitative Assessment of Cancer Risks, 3 Stat. Sci. 3 (1988). 
For these reasons, many experts—and some courts in toxic tort cases—have concluded that evidence 
from animal experiments is generally insufficient by itself to establish causation. See, e.g., Bruce N. 
Ames et al., The Causes and Prevention of Cancer, 92 Proc. Nat’l Acad. Sci. USA 5258 (1995); National 
Research Council, Science and Judgment in Risk Assessment 59 (1994) (“There are reasons based 
on both biologic principles and empirical observations to support the hypothesis that many forms of 
biologic responses, including toxic responses, can be extrapolated across mammalian species, including 
Homo sapiens, but the scientific basis of such extrapolation is not established with sufficient rigor to 
allow broad and definitive generalizations to be made.”).

27. Phoebe C. Ellsworth, Some Steps Between Attitudes and Verdicts, in Inside the Juror 42, 46 
(Reid Hastie ed., 1993). Nonetheless, in Lockhart v. McCree, 476 U.S. 162 (1986), the Supreme Court 
held that the exclusion of opponents of the death penalty in the guilt phase of a capital trial does not 
violate the constitutional requirement of an impartial jury.

28. See Shari Seidman Diamond, Reference Guide on Survey Research, Sections III, IV, in 
this manual.
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whether the missing data are likely to differ in some systematic way from the data 
that are collected.29 The methodological framework of a scientific survey is dif-
ferent. With probability methods, a sampling frame (i.e., an explicit list of units in 
the population) must be created. Individual units then are selected by an objective, 
well-defined chance procedure, and measurements are made on the sampled units. 

To illustrate the idea of a sampling frame, suppose that a defendant in a 
criminal case seeks a change of venue: According to him, popular opinion is so 
adverse that it would be difficult to impanel an unbiased jury. To prove the state 
of popular opinion, the defendant commissions a survey. The relevant popula-
tion consists of all persons in the jurisdiction who might be called for jury duty. 
The sampling frame is the list of all potential jurors, which is maintained by court 
officials and is made available to the defendant. In this hypothetical case, the fit 
between the sampling frame and the population would be excellent.

In other situations, the sampling frame is more problematic. In an obscenity 
case, for example, the defendant can offer a survey of community standards.30 
The population comprises all adults in the legally relevant district, but obtain-
ing a full list of such people may not be possible. Suppose the survey is done by 
telephone, but cell phones are excluded from the sampling frame. (This is usual 
practice.) Suppose too that cell phone users, as a group, hold different opinions 
from landline users. In this second hypothetical, the poll is unlikely to reflect the 
opinions of the cell phone users, no matter how many individuals are sampled and 
no matter how carefully the interviewing is done.

Many surveys do not use probability methods. In commercial disputes involv-
ing trademarks or advertising, the population of all potential purchasers of a prod-
uct is hard to identify. Pollsters may resort to an easily accessible subgroup of the 
population, for example, shoppers in a mall.31 Such convenience samples may be 
biased by the interviewer’s discretion in deciding whom to approach—a form of 

29. The U.S. Decennial Census generally does not count everyone that it should, and it counts 
some people who should not be counted. There is evidence that net undercount is greater in some 
demographic groups than others. Supplemental studies may enable statisticians to adjust for errors and 
omissions, but the adjustments rest on uncertain assumptions. See Lawrence D. Brown et al., Statistical 
Controversies in Census 2000, 39 Jurimetrics J. 347 (2007); David A. Freedman & Kenneth W. Wachter, 
Methods for Census 2000 and Statistical Adjustments, in Social Science Methodology 232 (Steven Turner 
& William Outhwaite eds., 2007) (reviewing technical issues and litigation surrounding census adjust-
ment in 1990 and 2000); 9 Stat. Sci. 458 (1994) (symposium presenting arguments for and against 
adjusting the 1990 census).

30. On the admissibility of such polls, see State v. Midwest Pride IV, Inc., 721 N.E.2d 458 (Ohio 
Ct. App. 1998) (holding one such poll to have been properly excluded and collecting cases from 
other jurisdictions).

31. E.g., Smith v. Wal-Mart Stores, Inc., 537 F. Supp. 2d 1302, 1333 (N.D. Ga. 2008) (treat-
ing a small mall-intercept survey as entitled to much less weight than a survey based on a probability 
sample); R.J. Reynolds Tobacco Co. v. Loew’s Theatres, Inc., 511 F. Supp. 867, 876 (S.D.N.Y. 1980) 
(questioning the propriety of basing a “nationally projectable statistical percentage” on a suburban 
mall intercept study).
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selection bias—and the refusal of some of those approached to participate—non-
response bias (infra Section II.B.2). Selection bias is acute when constituents write 
their representatives, listeners call into radio talk shows, interest groups collect 
information from their members, or attorneys choose cases for trial.32 

There are procedures that attempt to correct for selection bias. In quota sam-
pling, for example, the interviewer is instructed to interview so many women, so 
many older people, so many ethnic minorities, and the like. But quotas still leave 
discretion to the interviewers in selecting members of each demographic group 
and therefore do not solve the problem of selection bias.33

Probability methods are designed to avoid selection bias. Once the population 
is reduced to a sampling frame, the units to be measured are selected by a lottery 
that gives each unit in the sampling frame a known, nonzero probability of being 
chosen. Random numbers leave no room for selection bias.34 Such procedures 
are used to select individuals for jury duty. They also have been used to choose 
“bellwether” cases for representative trials to resolve issues in a large group of 
similar cases.35

32. E.g., Pittsburgh Press Club v. United States, 579 F.2d 751, 759 (3d Cir. 1978) (tax-exempt 
club’s mail survey of its members to show little sponsorship of income-producing uses of facilities was 
held to be inadmissible hearsay because it “was neither objective, scientific, nor impartial”), rev’d on 
other grounds, 615 F.2d 600 (3d Cir. 1980). Cf. In re Chevron U.S.A., Inc., 109 F.3d 1016 (5th Cir. 
1997). In that case, the district court decided to try 30 cases to resolve common issues or to ascertain 
damages in 3000 claims arising from Chevron’s allegedly improper disposal of hazardous substances. 
The court asked the opposing parties to select 15 cases each. Selecting 30 extreme cases, however, 
is quite different from drawing a random sample of 30 cases. Thus, the court of appeals wrote that 
although random sampling would have been acceptable, the trial court could not use the results in 
the 30 extreme cases to resolve issues of fact or ascertain damages in the untried cases. Id. at 1020. 
Those cases, it warned, were “not cases calculated to represent the group of 3000 claimants.” Id. See 
infra note 35.

A well-known example of selection bias is the 1936 Literary Digest poll. After successfully pre-
dicting the winner of every U.S. presidential election since 1916, the Digest used the replies from 2.4 
million respondents to predict that Alf Landon would win the popular vote, 57% to 43%. In fact, 
Franklin Roosevelt won by a landslide vote of 62% to 38%. See Freedman et al., supra note 12, at 
334–35. The Digest was so far off, in part, because it chose names from telephone books, rosters of 
clubs and associations, city directories, lists of registered voters, and mail order listings. Id. at 335, A-20 
n.6. In 1936, when only one household in four had a telephone, the people whose names appeared on 
such lists tended to be more affluent. Lists that overrepresented the affluent had worked well in earlier 
elections, when rich and poor voted along similar lines, but the bias in the sampling frame proved fatal 
when the Great Depression made economics a salient consideration for voters.

33. See Freedman et al., supra note 12, at 337–39.
34. In simple random sampling, units are drawn at random without replacement. In particular, 

each unit has the same probability of being chosen for the sample. Id. at 339–41. More complicated 
methods, such as stratified sampling and cluster sampling, have advantages in certain applications. In 
systematic sampling, every fifth, tenth, or hundredth (in mathematical jargon, every nth) unit in the 
sampling frame is selected. If the units are not in any special order, then systematic sampling is often 
comparable to simple random sampling.

35. E.g., In re Simon II Litig., 211 F.R.D. 86 (E.D.N.Y. 2002), vacated, 407 F.3d 125 (2d Cir. 
2005), dismissed, 233 F.R.D. 123 (E.D.N.Y. 2006); In re Estate of Marcus Human Rights Litig., 910 
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2. Of the units selected, which are measured?

Probability sampling ensures that within the limits of chance (infra Section IV), the 
sample will be representative of the sampling frame. The question remains regard-
ing which units actually get measured. When documents are sampled for audit, 
all the selected ones can be examined, at least in principle. Human beings are less 
easily managed, and some will refuse to cooperate. Surveys should therefore report 
nonresponse rates. A large nonresponse rate warns of bias, although supplemental 
studies may establish that nonrespondents are similar to respondents with respect 
to characteristics of interest.36

In short, a good survey defines an appropriate population, uses a probability 
method for selecting the sample, has a high response rate, and gathers accurate 
information on the sample units. When these goals are met, the sample tends to 
be representative of the population. Data from the sample can be extrapolated 

F. Supp. 1460 (D. Haw. 1995), aff’d sub nom. Hilao v. Estate of Marcos, 103 F.3d 767 (9th Cir. 1996); 
Cimino v. Raymark Indus., Inc., 751 F. Supp. 649 (E.D. Tex. 1990), rev’d, 151 F.3d 297 (5th Cir. 
1998); cf. In re Chevron U.S.A., Inc., 109 F.3d 1016 (5th Cir. 1997) (discussed supra note 32). Although 
trials in a suitable random sample of cases can produce reasonable estimates of average damages, the 
propriety of precluding individual trials raises questions of due process and the right to trial by jury. See 
Thomas E. Willging, Mass Torts Problems and Proposals: A Report to the Mass Torts Working Group 
(Fed. Judicial Ctr. 1999); cf. Wal-Mart Stores, Inc. v. Dukes, 131 S. Ct. 2541, 2560–61 (2011). The 
cases and the views of commentators are described more fully in David H. Kaye & David A. Freed-
man, Statistical Proof, in 1 Modern Scientific Evidence: The Law and Science of Expert Testimony § 
6:16 (David L. Faigman et al. eds., 2009–2010).

36. For discussions of nonresponse rates and admissibility of surveys conducted for litigation, 
see Johnson v. Big Lots Stores, Inc., 561 F. Supp. 2d 567 (E.D. La. 2008) (fair labor standards); United 
States v. Dentsply Int’l, Inc., 277 F. Supp. 2d 387, 437 (D. Del. 2003), rev’d on other grounds, 399 F.3d 
181 (3d Cir. 2005) (antitrust).

The 1936 Literary Digest election poll (supra note 32) illustrates the dangers in nonresponse. Only 
24% of the 10 million people who received questionnaires returned them. Most of the respondents 
probably had strong views on the candidates and objected to President Roosevelt’s economic program. 
This self-selection is likely to have biased the poll. Maurice C. Bryson, The Literary Digest Poll: Making 
of a Statistical Myth, 30 Am. Statistician 184 (1976); Freedman et al., supra note 12, at 335–36. Even 
when demographic characteristics of the sample match those of the population, caution is indicated. See 
David Streitfeld, Shere Hite and the Trouble with Numbers, 1 Chance 26 (1988); Chamont Wang, Sense 
and Nonsense of Statistical Inference: Controversy, Misuse, and Subtlety 174–76 (1993). 

In United States v. Gometz, 730 F.2d 475, 478 (7th Cir. 1984) (en banc), the Seventh Circuit 
recognized that “a low rate of response to juror questionnaires could lead to the underrepresentation of 
a group that is entitled to be represented on the qualified jury wheel.” Nonetheless, the court held that 
under the Jury Selection and Service Act of 1968, 28 U.S.C. §§ 1861–1878 (1988), the clerk did not 
abuse his discretion by failing to take steps to increase a response rate of 30%. According to the court, 
“Congress wanted to make it possible for all qualified persons to serve on juries, which is different 
from forcing all qualified persons to be available for jury service.” Gometz, 730 F.2d at 480. Although 
it might “be a good thing to follow up on persons who do not respond to a jury questionnaire,” the 
court concluded that Congress “was not concerned with anything so esoteric as nonresponse bias.” Id. 
at 479, 482; cf. In re United States, 426 F.3d 1 (1st Cir. 2005) (reaching the same result with respect to 
underrepresentation of African Americans resulting in part from nonresponse bias).
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to describe the characteristics of the population. Of course, surveys may be useful 
even if they fail to meet these criteria. But then, additional arguments are needed 
to justify the inferences.

C. Individual Measurements

1. Is the measurement process reliable?

Reliability and validity are two aspects of accuracy in measurement. In statistics, 
reliability refers to reproducibility of results.37 A reliable measuring instrument 
returns consistent measurements. A scale, for example, is perfectly reliable if 
it reports the same weight for the same object time and again. It may not be 
 accurate—it may always report a weight that is too high or one that is too low—
but the perfectly reliable scale always reports the same weight for the same object. 
Its errors, if any, are systematic: They always point in the same direction.

Reliability can be ascertained by measuring the same quantity several times; 
the measurements must be made independently to avoid bias. Given indepen-
dence, the correlation coefficient (infra Section V.B) between repeated measure-
ments can be used as a measure of reliability. This is sometimes called a test-retest 
correlation or a reliability coefficient. 

A courtroom example is DNA identification. An early method of identifi-
cation required laboratories to determine the lengths of fragments of DNA. By 
making independent replicate measurements of the fragments, laboratories deter-
mined the likelihood that two measurements differed by specified amounts.38 Such 
results were needed to decide whether a discrepancy between a crime sample and 
a suspect sample was sufficient to exclude the suspect.39 

Coding provides another example. In many studies, descriptive information 
is obtained on the subjects. For statistical purposes, the information usually has to 
be reduced to numbers. The process of reducing information to numbers is called 
“coding,” and the reliability of the process should be evaluated. For example, in 
a study of death sentencing in Georgia, legally trained evaluators examined short 
summaries of cases and ranked them according to the defendant’s culpability.40 

37. Courts often use “reliable” to mean “that which can be relied on” for some purpose, such 
as establishing probable cause or crediting a hearsay statement when the declarant is not produced 
for confrontation. Daubert v. Merrell Dow Pharms., Inc., 509 U.S. 579, 590 n.9 (1993), for example, 
distinguishes “evidentiary reliability” from reliability in the technical sense of giving consistent results. 
We use “reliability” to denote the latter.

38. See National Research Council, The Evaluation of Forensic DNA Evidence 139–41 (1996).
39. Id.; National Research Council, DNA Technology in Forensic Science 61–62 (1992). 

Current methods are discussed in David H. Kaye & George Sensabaugh, Reference Guide on DNA 
Identification Evidence, Section II, in this manual.

40. David C. Baldus et al., Equal Justice and the Death Penalty: A Legal and Empirical Analysis 
49–50 (1990).
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Two different aspects of reliability should be considered. First, the “within-
observer variability” of judgments should be small—the same evaluator should 
rate essentially identical cases in similar ways. Second, the “between-observer 
variability” should be small—different evaluators should rate the same cases in 
essentially the same way.

2. Is the measurement process valid?

Reliability is necessary but not sufficient to ensure accuracy. In addition to reli-
ability, validity is needed. A valid measuring instrument measures what it is sup-
posed to. Thus, a polygraph measures certain physiological responses to stimuli, 
for example, in pulse rate or blood pressure. The measurements may be reliable. 
Nonetheless, the polygraph is not valid as a lie detector unless the measurements 
it makes are well correlated with lying.41

When there is an established way of measuring a variable, a new measurement 
process can be validated by comparison with the established one. Breathalyzer 
readings can be validated against alcohol levels found in blood samples. LSAT 
scores used for law school admissions can be validated against grades earned in law 
school. A common measure of validity is the correlation coefficient between the 
predictor and the criterion (e.g., test scores and later performance).42 

Employment discrimination cases illustrate some of the difficulties. Thus, 
plaintiffs suing under Title VII of the Civil Rights Act may challenge an employ-
ment test that has a disparate impact on a protected group, and defendants may 
try to justify the use of a test as valid, reliable, and a business necessity.43 For 
validation, the most appropriate criterion variable is clear enough: job perfor-
mance. However, plaintiffs may then turn around and challenge the validity 
of performance ratings. For reliability, administering the test twice to the same 
group of people may be impractical. Even if repeated testing is practical, it may be 
 statistically inadvisable, because subjects may learn something from the first round 
of testing that affects their scores on the second round. Such “practice effects” are 
likely to compromise the independence of the two measurements, and indepen-
dence is needed to estimate reliability. Statisticians therefore use internal evidence 

41. See United States v. Henderson, 409 F.3d 1293, 1303 (11th Cir. 2005) (“while the physical 
responses recorded by a polygraph machine may be tested, ‘there is no available data to prove that 
those specific responses are attributable to lying.’”); National Research Council, The Polygraph and 
Lie Detection (2003) (reviewing the scientific literature).

42. As the discussion of the correlation coefficient indicates, infra Section V.B, the closer the 
coefficient is to 1, the greater the validity. For a review of data on test reliability and validity, see Paul 
R. Sackett et al., High-Stakes Testing in Higher Education and Employment: Appraising the Evidence for 
Validity and Fairness, 63 Am. Psychologist 215 (2008).

43. See, e.g., Washington v. Davis, 426 U.S. 229, 252 (1976); Albemarle Paper Co. v. Moody, 
422 U.S. 405, 430–32 (1975); Griggs v. Duke Power Co., 401 U.S. 424 (1971); Lanning v. S.E. Penn. 
Transp. Auth., 308 F.3d 286 (3d Cir. 2002).
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from the test itself. For example, if scores on the first half of the test correlate well 
with scores from the second half, then that is evidence of reliability. 

A further problem is that test-takers are likely to be a select group. The ones 
who get the jobs are even more highly selected. Generally, selection attenuates 
(weakens) the correlations. There are methods for using internal measures of reli-
ability to estimate test-retest correlations; there are other methods that correct for 
attenuation. However, such methods depend on assumptions about the nature of 
the test and the procedures used to select the test-takers and are therefore open 
to challenge.44

3. Are the measurements recorded correctly?

Judging the adequacy of data collection involves an examination of the process 
by which measurements are taken. Are responses to interviews coded correctly? 
Do mistakes distort the results? How much data are missing? What was done to 
compensate for gaps in the data? These days, data are stored in computer files. 
Cross-checking the files against the original sources (e.g., paper records), at least 
on a sample basis, can be informative.

Data quality is a pervasive issue in litigation and in applied statistics more gen-
erally. A programmer moves a file from one computer to another, and half the data 
disappear. The definitions of crucial variables are lost in the sands of time. Values 
get corrupted: Social security numbers come to have eight digits instead of nine, 
and vehicle identification numbers fail the most elementary consistency checks. 
Everybody in the company, from the CEO to the rawest mailroom trainee, turns 
out to have been hired on the same day. Many of the residential customers have 
last names that indicate commercial activity (“Happy Valley Farriers”). These 
problems seem humdrum by comparison with those of reliability and validity, 
but—unless caught in time—they can be fatal to statistical arguments.45

44. See Thad Dunning & David A. Freedman, Modeling Selection Effects, in Social Science Meth-
odology 225 (Steven Turner & William Outhwaite eds., 2007); Howard Wainer & David Thissen, 
True Score Theory: The Traditional Method, in Test Scoring 23 (David Thissen & Howard Wainer eds., 
2001).

45. See, e.g., Malletier v. Dooney & Bourke, Inc., 525 F. Supp. 2d 558, 630 (S.D.N.Y. 2007) 
(coding errors contributed “to the cumulative effect of the methodological errors” that warranted 
exclusion of a consumer confusion survey); EEOC v. Sears, Roebuck & Co., 628 F. Supp. 1264, 1304, 
1305 (N.D. Ill. 1986) (“[E]rrors in EEOC’s mechanical coding of information from applications in its 
hired and nonhired samples also make EEOC’s statistical analysis based on this data less reliable.” The 
EEOC “consistently coded prior experience in such a way that less experienced women are considered 
to have the same experience as more experienced men” and “has made so many general coding errors 
that its data base does not fairly reflect the characteristics of applicants for commission sales positions 
at Sears.”), aff’d, 839 F.2d 302 (7th Cir. 1988). But see Dalley v. Mich. Blue Cross-Blue Shield, Inc., 
612 F. Supp. 1444, 1456 (E.D. Mich. 1985) (“although plaintiffs show that there were some mistakes 
in coding, plaintiffs still fail to demonstrate that these errors were so generalized and so pervasive that 
the entire study is invalid.”).
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D. What Is Random?
In the law, a selection process sometimes is called “random,” provided that it does 
not exclude identifiable segments of the population. Statisticians use the term 
in a far more technical sense. For example, if we were to choose one person at 
random from a population, in the strict statistical sense, we would have to ensure 
that everybody in the population is chosen with exactly the same probability. 
With a randomized controlled experiment, subjects are assigned to treatment or 
control at random in the strict sense—by tossing coins, throwing dice, looking 
at tables of random numbers, or more commonly these days, by using a random 
number generator on a computer. The same rigorous definition applies to ran-
dom sampling. It is randomness in the technical sense that provides assurance of 
unbiased estimates from a randomized controlled experiment or a probability 
sample. Randomness in the technical sense also justifies calculations of standard 
errors, confidence intervals, and p-values (infra Sections IV–V). Looser definitions 
of randomness are inadequate for statistical purposes.

III. How Have the Data Been Presented?
After data have been collected, they should be presented in a way that makes 
them intelligible. Data can be summarized with a few numbers or with graphi-
cal displays. However, the wrong summary can mislead.46 Section III.A discusses 
rates or percentages and provides some cautionary examples of misleading sum-
maries, indicating the kinds of questions that might be considered when summa-
ries are presented in court. Percentages are often used to demonstrate statistical 
association, which is the topic of Section III.B. Section III.C considers graphical 
 summaries of data, while Sections III.D and III.E discuss some of the basic descrip-
tive statistics that are likely to be encountered in litigation, including the mean, 
median, and standard deviation.

A. Are Rates or Percentages Properly Interpreted?

1. Have appropriate benchmarks been provided?

The selective presentation of numerical information is like quoting someone out 
of context. Is a fact that “over the past three years,” a particular index fund of 
large-cap stocks “gained a paltry 1.9% a year” indicative of poor management? 
Considering that “the average large-cap value fund has returned just 1.3% a year,” 

46. See generally Freedman et al., supra note 12; Huff, supra note 12; Moore & Notz, supra note 
12; Zeisel, supra note 12.
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a growth rate of 1.9% is hardly an indictment.47 In this example and many others, 
it is helpful to find a benchmark that puts the figures into perspective.

2. Have the data collection procedures changed?

Changes in the process of collecting data can create problems of interpreta-
tion. Statistics on crime provide many examples. The number of petty larcenies 
reported in Chicago more than doubled one year—not because of an abrupt crime 
wave, but because a new police commissioner introduced an improved reporting 
system.48 For a time, police officials in Washington, D.C., “demonstrated” the 
success of a law-and-order campaign by valuing stolen goods at $49, just below 
the $50 threshold then used for inclusion in the Federal Bureau of Investigation’s 
Uniform Crime Reports.49 Allegations of manipulation in the reporting of crime 
from one time period to another are legion.50

Changes in data collection procedures are by no means limited to crime 
statistics. Indeed, almost all series of numbers that cover many years are affected 
by changes in definitions and collection methods. When a study includes such 
time-series data, it is useful to inquire about changes and to look for any sudden 
jumps, which may signal such changes. 

3. Are the categories appropriate?

Misleading summaries also can be produced by the choice of categories to be used 
for comparison. In Philip Morris, Inc. v. Loew’s Theatres, Inc.,51 and R.J. Reynolds 
Tobacco Co. v. Loew’s Theatres, Inc.,52 Philip Morris and R.J. Reynolds sought 
an injunction to stop the maker of Triumph low-tar cigarettes from running 
advertisements claiming that participants in a national taste test preferred Tri-
umph to other brands. Plaintiffs alleged that claims that Triumph was a “national 
taste test winner” or Triumph “beats” other brands were false and misleading. 
An exhibit introduced by the defendant contained the data shown in Table 1.53 
Only 14% + 22% = 36% of the sample preferred Triumph to Merit, whereas 

47. Paul J. Lim, In a Downturn, Buy and Hold or Quit and Fold?, N.Y. Times, July 27, 2008.
48. James P. Levine et al., Criminal Justice in America: Law in Action 99 (1986) (referring to 

a change from 1959 to 1960).
49. D. Seidman & M. Couzens, Getting the Crime Rate Down: Political Pressure and Crime Report-

ing, 8 Law & Soc’y Rev. 457 (1974).
50. Michael D. Maltz, Missing UCR Data and Divergence of the NCVS and UCR Trends, in 

Understanding Crime Statistics: Revisiting the Divergence of the NCVS and UCR 269, 280 (James 
P. Lynch & Lynn A. Addington eds., 2007) (citing newspaper reports in Boca Raton, Atlanta, New 
York, Philadelphia, Broward County (Florida), and Saint Louis); Michael Vasquez, Miami Police: FBI: 
Crime Stats Accurate, Miami Herald, May 1, 2008.

51. 511 F. Supp. 855 (S.D.N.Y. 1980).
52. 511 F. Supp. 867 (S.D.N.Y. 1980).
53. Philip Morris, 511 F. Supp. at 866.
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Table 1. Data Used by a Defendant to Refute Plaintiffs’ False Advertising Claim

 Triumph Triumph Triumph Triumph Triumph
 Much Somewhat About the Somewhat Much 
 Better Better Same Worse Worse 
 Than Merit Than Merit as Merit Than Merit Than Merit

Number 45 73 77 93 36
Percentage 14 22 24 29 11

29% + 11% = 40% preferred Merit to Triumph. By selectively combining catego-
ries, however, the defendant attempted to create a different impression. Because 
24% found the brands to be about the same, and 36% preferred Triumph, the 
defendant claimed that a clear majority (36% + 24% = 60%) found Triumph “as 
good [as] or better than Merit.”54 The court resisted this chicanery, finding that 
defendant’s test results did not support the advertising claims.55

There was a similar distortion in claims for the accuracy of a home pregnancy 
test. The manufacturer advertised the test as 99.5% accurate under laboratory con-
ditions. The data underlying this claim are summarized in Table 2.

Table 2 does indicate that only one error occurred in 200 assessments, or 
99.5% overall accuracy, but the table also shows that the test can make two types 
of errors: It can tell a pregnant woman that she is not pregnant (a false negative), 
and it can tell a woman who is not pregnant that she is (a false positive). The 
reported 99.5% accuracy rate conceals a crucial fact—the company had virtually 
no data with which to measure the rate of false positives.56

54. Id. 
55. Id. at 856–57.
56. Only two women in the sample were not pregnant; the test gave correct results for both of 

them. Although a false-positive rate of 0 is ideal, an estimate based on a sample of only two women 
is not. These data are reported in Arnold Barnett, How Numbers Can Trick You, Tech. Rev., Oct. 
1994, at 38, 44–45.

Table 2. Home Pregnancy Test Results

 Actually Pregnant Actually not Pregnant

Test says pregnant 197 0
Test says not pregnant   1 2
Total 198 2
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4. How big is the base of a percentage?

Rates and percentages often provide effective summaries of data, but these sta-
tistics can be misinterpreted. A percentage makes a comparison between two 
numbers: One number is the base, and the other number is compared to that base. 
Putting them on the same base (100) makes it easy to compare them. 

When the base is small, however, a small change in absolute terms can gener-
ate a large percentage gain or loss. This could lead to newspaper headlines such 
as “Increase in Thefts Alarming,” even when the total number of thefts is small.57 
Conversely, a large base will make for small percentage increases. In these situa-
tions, actual numbers may be more revealing than percentages. 

5. What comparisons are made?

Finally, there is the issue of which numbers to compare. Researchers sometimes 
choose among alternative comparisons. It may be worthwhile to ask why they 
chose the one they did. Would another comparison give a different view? A 
government agency, for example, may want to compare the amount of service 
now being given with that of earlier years—but what earlier year should be the 
baseline? If the first year of operation is used, a large percentage increase should 
be expected because of startup problems. If last year is used as the base, was it 
also part of the trend, or was it an unusually poor year? If the base year is not 
representative of other years, the percentage may not portray the trend fairly. No 
single question can be formulated to detect such distortions, but it may help to 
ask for the numbers from which the percentages were obtained; asking about the 
base can also be helpful.58

B. Is an Appropriate Measure of Association Used?
Many cases involve statistical association. Does a test for employee promotion 
have an exclusionary effect that depends on race or gender? Does the incidence 
of murder vary with the rate of executions for convicted murderers? Do consumer 
purchases of a product depend on the presence or absence of a product warning? 
This section discusses tables and percentage-based statistics that are frequently 
presented to answer such questions.59 

Percentages often are used to describe the association between two variables. 
Suppose that a university alleged to discriminate against women in admitting 

57. Lyda Longa, Increase in Thefts Alarming, Daytona News-J. June 8, 2008 (reporting a 35% 
increase in armed robberies in Daytona Beach, Florida, in a 5-month period, but not indicating 
whether the number had gone up by 6 (from 17 to 23), by 300 (from 850 to 1150), or by some other 
amount).

58. For assistance in coping with percentages, see Zeisel, supra note 12, at 1–24.
59. Correlation and regression are discussed infra Section V.
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students consists of only two colleges—engineering and business. The university 
admits 350 out of 800 male applicants; by comparison, it admits only 200 out of 
600 female applicants. Such data commonly are displayed as in Table 3.60

As Table 3 indicates, 350/800 = 44% of the males are admitted, compared 
with only 200/600 = 33% of the females. One way to express the disparity is 
to subtract the two percentages: 44% – 33% = 11 percentage points. Although 
such subtraction is commonly seen in jury discrimination cases,61 the difference is 
inevitably small when the two percentages are both close to zero. If the selection 
rate for males is 5% and that for females is 1%, the difference is only 4 percentage 
points. Yet, females have only one-fifth the chance of males of being admitted, 
and that may be of real concern.

For Table 3, the selection ratio (used by the Equal Employment Opportu-
nity Commission in its “80% rule”) is 33/44 = 75%, meaning that, on average, 
women have 75% the chance of admission that men have.62 However, the selec-
tion ratio has its own problems. In the last example, if the selection rates are 5% 
and 1%, then the exclusion rates are 95% and 99%. The ratio is 99/95 = 104%, 
meaning that females have, on average, 104% the risk of males of being rejected. 
The underlying facts are the same, of course, but this formulation sounds much 
less disturbing.

60. A table of this sort is called a “cross-tab” or a “contingency table.” Table 3 is “two-by-two” 
because it has two rows and two columns, not counting rows or columns containing totals.

61. See, e.g., State v. Gibbs, 758 A.2d 327, 337 (Conn. 2000); Primeaux v. Dooley, 747 N.W.2d 
137, 141 (S.D. 2008); D.H. Kaye, Statistical Evidence of Discrimination in Jury Selection, in Statistical 
Methods in Discrimination Litigation 13 (David H. Kaye & Mikel Aickin eds., 1986).

62. A procedure that selects candidates from the least successful group at a rate less than 80% of 
the rate for the most successful group “will generally be regarded by the Federal enforcement agencies 
as evidence of adverse impact.” EEOC Uniform Guidelines on Employee Selection Procedures, 29 
C.F.R. § 1607.4(D) (2008). The rule is designed to help spot instances of substantially discriminatory 
practices, and the commission usually asks employers to justify any procedures that produce selection 
ratios of 80% or less.

The analogous statistic used in epidemiology is called the relative risk. See Green et al., supra 
note 13, Section III.A. Relative risks are usually quoted as decimals; for example, a selection ratio of 
75% corresponds to a relative risk of 0.75.

Table 3. Admissions by Gender

Decision Male Female Total

Admit 350 200  550
Deny 450 400  850
Total 800 600 1400
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The odds ratio is more symmetric. If 5% of male applicants are admitted, 
the odds on a man being admitted are 5/95 = 1/19; the odds on a woman being 
admitted are 1/99. The odds ratio is (1/99)/(1/19) = 19/99. The odds ratio for 
rejection instead of acceptance is the same, except that the order is reversed.63 
Although the odds ratio has desirable mathematical properties, its meaning may 
be less clear than that of the selection ratio or the simple difference.

Data showing disparate impact are generally obtained by aggregating— putting 
together—statistics from a variety of sources. Unless the source material is fairly 
homogeneous, aggregation can distort patterns in the data. We illustrate the prob-
lem with the hypothetical admission data in Table 3. Applicants can be classified 
not only by gender and admission but also by the college to which they applied, 
as in Table 4.

The entries in Table 4 add up to the entries in Table 3. Expressed in a more 
technical manner, Table 3 is obtained by aggregating the data in Table 4. Yet 
there is no association between gender and admission in either college; men and 
women are admitted at identical rates. Combining two colleges with no associa-
tion produces a university in which gender is associated strongly with admission. 
The explanation for this paradox is that the business college, to which most of the 
women applied, admits relatively few applicants. It is easier to be accepted at the 
engineering college, the college to which most of the men applied. This example 
illustrates a common issue: Association can result from combining heterogeneous 
statistical material.64 

63. For women, the odds on rejection are 99 to 1; for men, 19 to 1. The ratio of these odds is 
99/19. Likewise, the odds ratio for an admitted applicant being a man as opposed to a denied applicant 
being a man is also 99/19.

64. Tables 3 and 4 are hypothetical, but closely patterned on a real example. See P.J. Bickel 
et al., Sex Bias in Graduate Admissions: Data from Berkeley, 187 Science 398 (1975). The tables are an 
instance of Simpson’s Paradox.

Table 4. Admissions by Gender and College

Engineering Business

Decision Male Female Male Female

Admit 300 100  50 100

Deny 300 100 150 300
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C. Does a Graph Portray Data Fairly?
Graphs are useful for revealing key characteristics of a batch of numbers, trends 
over time, and the relationships among variables.

1. How are trends displayed?

Graphs that plot values over time are useful for seeing trends. However, the scales 
on the axes matter. In Figure 1, the rate of all crimes of domestic violence in 
Florida (per 100,000 people) appears to decline rapidly over the 10 years from 
1998 through 2007; in Figure 2, the same rate appears to drop slowly.65 The 
moral is simple: Pay attention to the markings on the axes to determine whether 
the scale is appropriate.

Figure 1  Figure 2

2. How are distributions displayed? 

A graph commonly used to display the distribution of data is the histogram. One 
axis denotes the numbers, and the other indicates how often those fall within 

65. Florida Statistical Analysis Center, Florida Department of Law Enforcement, Florida’s Crime 
Rate at a Glance, available at http://www.fdle.state.fl.us/FSAC/Crime_Trends/domestic_violence/
index.asp. The data are from the Florida Uniform Crime Report statistics on crimes ranging from 
simple stalking and forcible fondling to murder and arson. The Web page with the numbers graphed 
in Figures 1 and 2 is no longer posted, but similar data for all violent crime is available at http://www.
fdle.state.fl.us/FSAC/Crime_Trends/Violent-Crime.aspx.

5-2 �xed image5-1 �xed image
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specified intervals (called “bins” or “class intervals”). For example, we flipped a 
quarter 10 times in a row and counted the number of heads in this “batch” of 10 
tosses. With 50 batches, we obtained the following counts:66

7 7 5 6 8 4 2 3 6 5 4 3 4 7 4 6 8 4 7 4 7 4 5 4 3
4 4 2 5 3 5 4 2 4 4 5 7 2 3 5 4 6 4 9 10 5 5 6 6 4

The histogram is shown in Figure 3.67 A histogram shows how the data are 
distributed over the range of possible values. The spread can be made to appear 
larger or smaller, however, by changing the scale of the horizontal axis. Likewise, 
the shape can be altered somewhat by changing the size of the bins.68 It may be 
worth inquiring how the analyst chose the bin widths.

66. The coin landed heads 7 times in the first 10 tosses; by coincidence, there were also 7 heads 
in the next 10 tosses; there were 5 heads in the third batch of 10 tosses; and so forth.

67. In Figure 3, the bin width is 1. There were no 0s or 1s in the data, so the bars over 0 and 1 
disappear. There is a bin from 1.5 to 2.5; the four 2s in the data fall into this bin, so the bar over the 
interval from 1.5 to 2.5 has height 4. There is another bin from 2.5 to 3.5, which catches five 3s; 
the height of the corresponding bar is 5. And so forth.

All the bins in Figure 3 have the same width, so this histogram is just like a bar graph. However, 
data are often published in tables with unequal intervals. The resulting histograms will have unequal 
bin widths; bar heights should be calculated so that the areas (height × width) are proportional to the 
frequencies. In general, a histogram differs from a bar graph in that it represents frequencies by area, 
not height. See Freedman et al., supra note 12, at 31–41.

68. As the width of the bins decreases, the graph becomes more detailed, but the appearance 
becomes more ragged until finally the graph is effectively a plot of each datum. The optimal bin width 
depends on the subject matter and the goal of the analysis.

Figure 3.  Histogram showing how frequently various numbers of heads 
appeared in 50 batches of 10 tosses of a quarter.
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D.  Is an Appropriate Measure Used for the Center of a 
Distribution?

Perhaps the most familiar descriptive statistic is the mean (or “arithmetic mean”). 
The mean can be found by adding all the numbers and dividing the total by how 
many numbers were added. By comparison, the median cuts the numbers into 
halves: half the numbers are larger than the median and half are smaller.69 Yet 
a third statistic is the mode, which is the most common number in the dataset. 
These statistics are different, although they are not always clearly distinguished.70 
The mean takes account of all the data—it involves the total of all the numbers; 
however, particularly with small datasets, a few unusually large or small observa-
tions may have too much influence on the mean. The median is resistant to such 
outliers.

Thus, studies of damage awards in tort cases find that the mean is larger than 
the median.71 This is because the mean takes into account (indeed, is heavily 
influenced by) the magnitudes of the relatively few very large awards, whereas 
the median merely counts their number. If one is seeking a single, representative 
number for the awards, the median may be more useful than the mean.72 Still, if 
the issue is whether insurers were experiencing more costs from jury verdicts, the 
mean is the more appropriate statistic: The total of the awards is directly related 
to the mean, not to the median.73

69. Technically, at least half the numbers are at the median or larger; at least half are at the 
median or smaller. When the distribution is symmetric, the mean equals the median. The values 
diverge, however, when the distribution is asymmetric, or skewed.

70. In ordinary language, the arithmetic mean, the median, and the mode seem to be referred to 
interchangeably as “the average.” In statistical parlance, however, the average is the arithmetic mean. 
The mode is rarely used by statisticians, because it is unstable: Small changes to the data often result 
in large changes to the mode.

71. In a study using a probability sample of cases, the median compensatory award in wrongful 
death cases was $961,000, whereas the mean award was around $3.75 million for the 162 cases in 
which the plaintiff prevailed. Thomas H. Cohen & Steven K. Smith, U.S. Dep’t of Justice, Bureau 
of Justice Statistics Bulletin NCJ 202803, Civil Trial Cases and Verdicts in Large Counties 2001, 10 
(2004). In TXO Production Corp. v. Alliance Resources Corp., 509 U.S. 443 (1993), briefs portraying the 
punitive damage system as out of control pointed to mean punitive awards. These were some 10 times 
larger than the median awards described in briefs defending the system of punitive damages. Michael 
Rustad & Thomas Koenig, The Supreme Court and Junk Social Science: Selective Distortion in Amicus Briefs, 
72 N.C. L. Rev. 91, 145–47 (1993).

72. In passing on proposed settlements in class-action lawsuits, courts have been advised to look 
to the magnitude of the settlements negotiated by the parties. But the mean settlement will be large 
if a higher number of meritorious, high-cost cases are resolved early in the life cycle of the litigation. 
This possibility led the court in In re Educational Testing Service Praxis Principles of Learning and Teaching, 
Grades 7-12 Litig., 447 F. Supp. 2d 612, 625 (E.D. La. 2006), to regard the smaller median settlement 
as “more representative of the value of a typical claim than the mean value” and to use this median 
in extrapolating to the entire class of pending claims.

73. To get the total award, just multiply the mean by the number of awards; by contrast, the 
total cannot be computed from the median. (The more pertinent figure for the insurance industry is 
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Research also has shown that there is considerable stability in the ratio of 
punitive to compensatory damage awards, and the Supreme Court has placed 
great weight on this ratio in deciding whether punitive damages are excessive 
in a particular case. In Exxon Shipping Co. v. Baker,74 Exxon contended that an 
award of $2.5 billion in punitive damages for a catastrophic oil spill in Alaska was 
unreasonable under federal maritime law. The Court looked to a “comprehen-
sive study of punitive damages awarded by juries in state civil trials [that] found 
a median ratio of punitive to compensatory awards of just 0.62:1, but a mean 
ratio of 2.90:1.”75 The higher mean could reflect a relatively small but disturbing 
proportion of unjustifiably large punitive awards.76 Looking to the median ratio as 
“the line near which cases like this one largely should be grouped,” the majority 
concluded that “a 1:1 ratio, which is above the median award, is a fair upper limit 
in such maritime cases [of reckless conduct].”77

E. Is an Appropriate Measure of Variability Used?
The location of the center of a batch of numbers reveals nothing about the varia-
tions exhibited by these numbers.78 Statistical measures of variability include the 
range, the interquartile range, and the standard deviation. The range is the differ-
ence between the largest number in the batch and the smallest. The range seems 
natural, and it indicates the maximum spread in the numbers, but the range is 
unstable because it depends entirely on the most extreme values.79 The interquar-
tile range is the difference between the 25th and 75th percentiles.80 The inter-
quartile range contains 50% of the numbers and is resistant to changes in extreme 
values. The standard deviation is a sort of mean deviation from the mean.81

not the total of jury awards, but actual claims experience including settlements; of course, even the 
risk of large punitive damage awards may have considerable impact.)

74. 128 S. Ct. 2605 (2008).
75. Id. at 2625.
76. According to the Court, “the outlier cases subject defendants to punitive damages that 

dwarf the corresponding compensatories,” and the “stark unpredictability” of these rare awards is the 
“real problem.” Id. This perceived unpredictability has been the subject of various statistical studies 
and much debate. See Anthony J. Sebok, Punitive Damages: From Myth to Theory, 92 Iowa L. Rev. 
957 (2007).

77. 128 S. Ct. at 2633.
78. The numbers 1, 2, 5, 8, 9 have 5 as their mean and median. So do the numbers 5, 5, 5, 

5, 5. In the first batch, the numbers vary considerably about their mean; in the second, the numbers 
do not vary at all.

79. Moreover, the range typically depends on the number of units in the sample.
80. By definition, 25% of the data fall below the 25th percentile, 90% fall below the 90th per-

centile, and so on. The median is the 50th percentile.
81. When the distribution follows the normal curve, about 68% of the data will be within 1 

standard deviation of the mean, and about 95% will be within 2 standard deviations of the mean. For 
other distributions, the proportions will be different. 
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There are no hard and fast rules about which statistic is the best. In general, 
the bigger the measures of spread are, the more the numbers are dispersed.82 
Particularly in small datasets, the standard deviation can be influenced heavily by 
a few outlying values. To assess the extent of this influence, the mean and the 
standard deviation can be recomputed with the outliers discarded. Beyond this, 
any of the statistics can (and often should) be supplemented with a figure that 
displays much of the data.

IV.  What Inferences Can Be Drawn from 
the Data?

The inferences that may be drawn from a study depend on the design of the study 
and the quality of the data (supra Section II). The data might not address the issue 
of interest, might be systematically in error, or might be difficult to interpret 
because of confounding. Statisticians would group these concerns together under 
the rubric of “bias.” In this context, bias means systematic error, with no con-
notation of prejudice. We turn now to another concern, namely, the impact of 
random chance on study results (“random error”).83

If a pattern in the data is the result of chance, it is likely to wash out when 
more data are collected. By applying the laws of probability, a statistician can assess 
the likelihood that random error will create spurious patterns of certain kinds. 
Such assessments are often viewed as essential when making inferences from data. 

Technically, the standard deviation is the square root of the variance; the variance is the mean 
square deviation from the mean. For example, if the mean is 100, then 120 deviates from the mean 
by 20, and the square of 20 is 202 = 400. If the variance (i.e., the mean of the squared deviations) is 
900, then the standard deviation is the square root of 900, that is, 900 30= .  Taking the square root 
gets back to the original scale of the measurements. For example, if the measurements are of length in 
inches, the variance is in square inches; taking the square root changes back to inches.

82. In Exxon Shipping Co. v. Baker, 554 U.S. 471 (2008), along with the mean and median ratios 
of punitive to compensatory awards of 0.62 and 2.90, the Court referred to a standard deviation of 
13.81. Id. at 498. These numbers led the Court to remark that “[e]ven to those of us  unsophisticated 
in statistics, the thrust of these figures is clear: the spread is great, and the outlier cases subject defen-
dants to punitive damages that dwarf the corresponding compensatories.” Id. at 499-500. The size of 
the standard deviation compared to the mean supports the observation that ratios in the cases of jury 
award studies are dispersed. A graph of each pair of punitive and compensatory damages offers more 
insight into how scattered these figures are. See Theodore Eisenberg et al., The Predictability of Punitive 
Damages, 26 J. Legal Stud. 623 (1997); infra Section V.A (explaining scatter diagrams).

83. Random error is also called sampling error, chance error, or statistical error. Econometricians 
use the parallel concept of random disturbance terms. See Rubinfeld, supra note 21. Randomness and 
cognate terms have precise technical meanings; it is randomness in the technical sense that justifies the 
probability calculations behind standard errors, confidence intervals, and p-values (supra Section II.D, 
infra Sections IV.A–B). For a discussion of samples and populations, see supra Section II.B.
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Thus, statistical inference typically involves tasks such as the following, which will 
be discussed in the rest of this guide.

 
•	 Estimation. A statistician draws a sample from a population (supra Sec-

tion II.B) and estimates a parameter—that is, a numerical characteristic of 
the population. (The average value of a large group of claims is a parameter 
of perennial interest.) Random error will throw the estimate off the mark. 
The question is, by how much? The precision of an estimate is usually 
reported in terms of the standard error and a confidence interval.

•	 Significance testing. A “null hypothesis” is formulated—for example, that 
a parameter takes a particular value. Because of random error, an esti-
mated value for the parameter is likely to differ from the value specified 
by the null—even if the null is right. (“Null hypothesis” is often short-
ened to “null.”) How likely is it to get a difference as large as, or larger 
than, the one observed in the data? This chance is known as a p-value. 
Small p- values argue against the null hypothesis. Statistical significance is 
determined by reference to the p-value; significance testing (also called 
hypothesis testing) is the technique for computing p-values and determin-
ing statistical significance.

•	 Developing a statistical model. Statistical inferences often depend on the valid-
ity of statistical models for the data. If the data are collected on the basis of 
a probability sample or a randomized experiment, there will be statistical 
models that suit the occasion, and inferences based on these models will be 
secure. Otherwise, calculations are generally based on analogy: This group of 
people is like a random sample; that observational study is like a randomized 
experiment. The fit between the statistical model and the data collection 
process may then require examination—how good is the analogy? If the 
model breaks down, that will bias the analysis.

•	 Computing posterior probabilities. Given the sample data, what is the prob-
ability of the null hypothesis? The question might be of direct interest to 
the courts, especially when translated into English; for example, the null 
hypothesis might be the innocence of the defendant in a criminal case. 
Posterior probabilities can be computed using a formula called Bayes’ rule. 
However, the computation often depends on prior beliefs about the statis-
tical model and its parameters; such prior beliefs almost necessarily require 
subjective judgment. According to the frequentist theory of statistics,84  

84. The frequentist theory is also called objectivist, by contrast with the subjectivist version of 
Bayesian theory. In brief, frequentist methods treat probabilities as objective properties of the system 
being studied. Subjectivist Bayesians view probabilities as measuring subjective degrees of belief. See 
infra Section IV.D and Appendix, Section A, for discussion of the two positions. The Bayesian position 
is named after the Reverend Thomas Bayes (England, c. 1701–1761). His essay on the subject was 
published after his death: An Essay Toward Solving a Problem in the Doctrine of Chances, 53 Phil. Trans. 
Royal Soc’y London 370 (1763–1764). For discussion of the foundations and varieties of Bayesian and 

http://nap.nationalacademies.org/13163


Reference Manual on Scientific Evidence: Third Edition

Copyright National Academy of Sciences. All rights reserved.

Reference Manual on Scientific Evidence

242

prior probabilities rarely have meaning and neither do poster ior 
probabilities.85

Key ideas of estimation and testing will be illustrated by courtroom exam-
ples, with some complications omitted for ease of presentation and some details 
postponed (see infra Section V.D on statistical models, and the Appendix on the 
calculations).

The first example, on estimation, concerns the Nixon papers. Under the Pres-
idential Recordings and Materials Preservation Act of 1974, Congress impounded 
Nixon’s presidential papers after he resigned. Nixon sued, seeking compensation 
on the theory that the materials belonged to him personally. Courts ruled in his 
favor: Nixon was entitled to the fair market value of the papers, with the amount 
to be proved at trial.86

The Nixon papers were stored in 20,000 boxes at the National Archives in 
Alexandria, Virginia. It was plainly impossible to value this entire population of 
material. Appraisers for the plaintiff therefore took a random sample of 500 boxes. 
(From this point on, details are simplified; thus, the example becomes somewhat 
hypothetical.) The appraisers determined the fair market value of each sample 
box. The average of the 500 sample values turned out to be $2000. The standard 
deviation (supra Section III.E) of the 500 sample values was $2200. Many boxes 
had low appraised values whereas some boxes were considered to be extremely 
valuable; this spread explains the large standard deviation.

A. Estimation

1. What estimator should be used?

With the Nixon papers, it is natural to use the average value of the 500 sample 
boxes to estimate the average value of all 20,000 boxes comprising the population. 

other forms of statistical inference, see, e.g., Richard M. Royall, Statistical Inference: A Likelihood 
Paradigm (1997); James Berger, The Case for Objective Bayesian Analysis, 1 Bayesian Analysis 385 (2006), 
available at http://ba.stat.cmu.edu/journal/2006/vol01/issue03/berger.pdf; Stephen E. Fienberg, Does 
It Make Sense to be an “Objective Bayesian”? (Comment on Articles by Berger and by Goldstein), 1  Bayesian 
Analysis 429 (2006); David Freedman, Some Issues in the Foundation of Statistics, 1 Found. Sci. 19 
(1995), reprinted in Topics in the Foundation of Statistics 19 (Bas C. van Fraasen ed., 1997); see also 
D.H. Kaye, What Is Bayesianism? in Probability and Inference in the Law of Evidence: The Uses and 
Limits of Bayesianism (Peter Tillers & Eric Green eds., 1988), reprinted in 28 Jurimetrics J. 161 (1988) 
(distinguishing between “Bayesian probability,” “Bayesian statistical inference,” “Bayesian inference 
writ large,” and “Bayesian decision theory”).

85. Prior probabilities of repeatable events (but not hypotheses) can be defined within the fre-
quentist framework. See infra note 122. When this happens, prior and posterior probabilities for these 
events are meaningful according to both schools of thought.

86. Nixon v. United States, 978 F.2d 1269 (D.C. Cir. 1992); Griffin v. United States, 935 F. 
Supp. 1 (D.D.C. 1995).
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With the average value for each box having been estimated as $2000, the plaintiff 
demanded compensation in the amount of

20,000 × $2,000 = $40,000,000.

In more complex problems, statisticians may have to choose among several 
estimators. Generally, estimators that tend to make smaller errors are preferred; 
however, “error” might be quantified in more than one way. Moreover, the 
advantage of one estimator over another may depend on features of the population 
that are largely unknown, at least before the data are collected and analyzed. For 
complicated problems, professional skill and judgment may therefore be required 
when choosing a sample design and an estimator. In such cases, the choices and 
the rationale for them should be documented.

2. What is the standard error? The confidence interval?

An estimate based on a sample is likely to be off the mark, at least by a small 
amount, because of random error. The standard error gives the likely magnitude 
of this random error, with smaller standard errors indicating better estimates.87 
In our example of the Nixon papers, the standard error for the sample aver-
age can be computed from (1) the size of the sample—500 boxes—and (2) the 
standard deviation of the sample values; see infra Appendix. Bigger samples give 
estimates that are more precise. Accordingly, the standard error should go down 
as the sample size grows, although the rate of improvement slows as the sample 
gets bigger. (“Sample size” and “the size of the sample” just mean the number 
of items in the sample; the “sample average” is the average value of the items in 
the sample.) The standard deviation of the sample comes into play by measuring 
heterogeneity. The less heterogeneity in the values, the smaller the standard error. 
For example, if all the values were about the same, a tiny sample would give an 
accurate estimate. Conversely, if the values are quite different from one another, 
a larger sample would be needed.

With a random sample of 500 boxes and a standard deviation of $2200, the 
standard error for the sample average is about $100. The plaintiff ’s total demand 
was figured as the number of boxes (20,000) times the sample average ($2000). 
Therefore, the standard error for the total demand can be computed as 20,000 
times the standard error for the sample average88:

87. We distinguish between (1) the standard deviation of the sample, which measures the spread 
in the sample data and (2) the standard error of the sample average, which measures the likely size of 
the random error in the sample average. The standard error is often called the standard deviation, and 
courts generally use the latter term. See, e.g., Castaneda v. Partida, 430 U.S. 482 (1977).

88. We are assuming a simple random sample. Generally, the formula for the standard error must 
take into account the method used to draw the sample and the nature of the estimator. In fact, the 
Nixon appraisers used more elaborate statistical procedures. Moreover, they valued the material as of 
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20,000 × $100 = $2,000,000.

How is the standard error to be interpreted? Just by the luck of the draw, a 
few too many high-value boxes may have come into the sample, in which case 
the estimate of $40,000,000 is too high. Or, a few too many low-value boxes may 
have been drawn, in which case the estimate is too low. This is random error. 
The net effect of random error is unknown, because data are available only on 
the sample, not on the full population. However, the net effect is likely to be 
something close to the standard error of $2,000,000. Random error throws the 
estimate off, one way or the other, by something close to the standard error. The 
role of the standard error is to gauge the likely size of the random error. 

The plaintiff ’s argument may be open to a variety of objections, particularly 
regarding appraisal methods. However, the sampling plan is sound, as is the 
extrapolation from the sample to the population. And there is no need for a larger 
sample: The standard error is quite small relative to the total claim.

Random errors larger in magnitude than the standard error are common-
place. Random errors larger in magnitude than two or three times the standard 
error are unusual. Confidence intervals make these ideas more precise. Usually, 
a confidence interval for the population average is centered at the sample aver-
age; the desired confidence level is obtained by adding and subtracting a suitable 
multiple of the standard error. Statisticians who say that the population average 
falls within 1 standard error of the sample average will be correct about 68% of 
the time. Those who say “within 2 standard errors” will be correct about 95% 
of the time, and those who say “within 3 standard errors” will be correct about 
99.7% of the time, and so forth. (We are assuming a large sample; the confidence 
levels correspond to areas under the normal curve and are approximations; the 
“population average” just means the average value of all the items in the popu-
lation.89) In summary,

•	 To	get	a	68%	confidence	interval,	start	at	the	sample	average,	then	add	and	
subtract 1 standard error.

•	 To	get	a	95%	confidence	interval,	start	at	the	sample	average,	then	add	and	
subtract twice the standard error.

1995, extrapolated backward to the time of taking (1974), and then added interest. The text ignores 
these complications.

89. See infra Appendix. The area under the normal curve between –1 and +1 is close to 68.3%. 
Likewise, the area between –2 and +2 is close to 95.4%. Many academic statisticians would use 
±1.96 SE for a 95% confidence interval. However, the normal curve only gives an approximation to 
the relevant chances, and the error in that approximation will often be larger than a few tenths of a 
percent. For simplicity, we use ±1 SE for the 68% confidence level, and ±2 SE for 95% confidence. 
The normal curve gives good approximations when the sample size is reasonably large; for small 
samples, other techniques should be used. See infra notes 106–07.
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•	 To	get	a	99.7%	confidence	interval,	start	at	the	sample	average,	then	add	
and subtract three times the standard error.

With the Nixon papers, the 68% confidence interval for plaintiff ’s total 
demand runs 

from $40,000,000 - $2,000,000 = $38,000,000.
to $40,000,000 + $2,000,000 = $42,000,000.

The 95% confidence interval runs

from $40,000,000 - (2 × $2,000,000) = $36,000,000.
to $40,000,000 + (2 × $2,000,000) = $44,000,000.

The 99.7% confidence interval runs

from $40,000,000 - (3 × $2,000,000) = $34,000,000.
to $40,000,000 + (3 × $2,000,000) = $46,000,000.

To write this more compactly, we abbreviate standard error as SE. Thus, 1 
SE is one standard error, 2 SE is twice the standard error, and so forth. With a 
large sample and an estimate like the sample average, a 68% confidence interval 
is the range

estimate – 1 SE to estimate + 1 SE.

A 95% confidence interval is the range

estimate – 2 SE to estimate + 2 SE.

The 99.7% confidence interval is the range

estimate – 3 SE to estimate + 3 SE.

For a given sample size, increased confidence can be attained only by widen-
ing the interval. The 95% confidence level is the most popular, but some authors 
use 99%, and 90% is seen on occasion. (The corresponding multipliers on the SE 
are about 2, 2.6, and 1.6, respectively; see infra Appendix.) The phrase “margin of 
error” generally means twice the standard error. In medical journals, “confidence 
interval” is often abbreviated as “CI.”
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The main point is that an estimate based on a sample will differ from the exact 
population value, because of random error. The standard error gives the likely 
size of the random error. If the standard error is small, random error probably has 
little effect. If the standard error is large, the estimate may be seriously wrong. 
Confidence intervals are a technical refinement, and bias is a separate issue to 
consider (infra Section IV.A.4).

3. How big should the sample be?

There is no easy answer to this sensible question. Much depends on the level of 
error that is tolerable and the nature of the material being sampled. Generally, 
increasing the size of the sample will reduce the level of random error (“sampling 
error”). Bias (“nonsampling error”) cannot be reduced that way. Indeed, beyond 
some point, large samples are harder to manage and more vulnerable to non-
sampling error. To reduce bias, the researcher must improve the design of the 
study or use a statistical model more tightly linked to the data collection process. 

If the material being sampled is heterogeneous, random error will be large; 
a larger sample will be needed to offset the heterogeneity (supra Section IV.A.1). 
A pilot sample may be useful to estimate heterogeneity and determine the final 
sample size. Probability samples require some effort in the design phase, and it 
will rarely be sensible to draw a sample with fewer than, say, two or three dozen 
items. Moreover, with such small samples, methods based on the normal curve 
(supra Section IV.A.2) will not apply.

Population size (i.e., the number of items in the population) usually has little 
bearing on the precision of estimates for the population average. This is surpris-
ing. On the other hand, population size has a direct bearing on estimated totals. 
Both points are illustrated by the Nixon papers (see supra Section IV.A.2 and infra 
Appendix). To be sure, drawing a probability sample from a large population may 

5-4 �xed image
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involve a lot of work. Samples presented in the courtroom have ranged from 5 
(tiny) to 1.7 million (huge).90

4. What are the technical difficulties?

To begin with, “confidence” is a term of art. The confidence level indicates the 
percentage of the time that intervals from repeated samples would cover the true 
value. The confidence level does not express the chance that repeated estimates 
would fall into the confidence interval.91 With the Nixon papers, the 95% confi-
dence interval should not be interpreted as saying that 95% of all random samples 
will produce estimates in the range from $36 million to $44 million. Moreover, 
the confidence level does not give the probability that the unknown parameter lies 
within the confidence interval.92 For example, the 95% confidence level should 
not be translated to a 95% probability that the total value of the papers is in the 
range from $36 million to $44 million. According to the frequentist theory of 
statistics, probability statements cannot be made about population characteristics: 
Probability statements apply to the behavior of samples. That is why the different 
term “confidence” is used.

The next point to make is that for a given confidence level, a narrower 
interval indicates a more precise estimate, whereas a broader interval indicates less 

90. See Lebrilla v. Farmers Group, Inc., No. 00-CC-017185 (Cal. Super. Ct., Orange County, 
Dec. 5, 2006) (preliminary approval of settlement), a class action lawsuit on behalf of plaintiffs who 
were insured by Farmers and had automobile accidents. Plaintiffs alleged that replacement parts rec-
ommended by Farmers did not meet specifications: Small samples were used to evaluate these allega-
tions. At the other extreme, it was proposed to adjust Census 2000 for undercount and overcount by 
reviewing a sample of 1.7 million persons. See Brown et al., supra note 29, at 353.

91. Opinions reflecting this misinterpretation include In re Silicone Gel Breast Implants Prods. 
Liab. Litig, 318 F. Supp. 2d 879, 897 (C.D. Cal. 2004) (“a margin of error between 0.5 and 8.0 at 
the 95% confidence level . . . means that 95 times out of 100 a study of that type would yield a rela-
tive risk value somewhere between 0.5 and 8.0.”); United States ex rel. Free v. Peters, 806 F. Supp. 
705, 713 n.6 (N.D. Ill. 1992) (“A 99% confidence interval, for instance, is an indication that if we 
repeated our measurement 100 times under identical conditions, 99 times out of 100 the point estimate 
derived from the repeated experimentation will fall within the initial interval estimate. . . .”), rev’d 
in part, 12 F.3d 700 (7th Cir. 1993). The more technically correct statement in the Silicone Gel case, 
for example, would be that “the confidence interval of 0.5 to 8.0 means that the relative risk in the 
population could fall within this wide range and that in roughly 95 times out of 100, random samples 
from the same population, the confidence intervals (however wide they might be) would include the 
population value (whatever it is).”

92. See, e.g., Freedman et al., supra note 12, at 383–86; infra Section IV.B.1. Consequently, it is 
misleading to suggest that “[a] 95% confidence interval means that there is a 95% probability that the 
‘true’ relative risk falls within the interval” or that “the probability that the true value was . . . within 
two standard deviations of the mean . . . would be 95 percent.” DeLuca v. Merrell Dow Pharms., 
Inc., 791 F. Supp. 1042, 1046 (D.N.J. 1992), aff’d, 6 F.3d 778 (3d Cir. 1993); SmithKline Beecham 
Corp. v. Apotex Corp., 247 F. Supp. 2d 1011, 1037 (N.D. Ill. 2003), aff’d on other grounds, 403 F.3d 
1331 (Fed. Cir. 2005).
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precision.93 A high confidence level with a broad interval means very little, but a 
high confidence level for a small interval is impressive, indicating that the random 
error in the sample estimate is low. For example, take a 95% confidence interval 
for a damage claim. An interval that runs from $34 million to $44 million is one 
thing, but –$10 million to $90 million is something else entirely. Statements about 
confidence without mention of an interval are practically meaningless.94

Standard errors and confidence intervals are often derived from statistical 
models for the process that generated the data. The model usually has  parameters—
numerical constants describing the population from which samples were drawn. 
When the values of the parameters are not known, the statistician must work 
backward, using the sample data to make estimates. That was the case here.95 
Generally, the chances needed for statistical inference are computed from a model 
and estimated parameter values.

If the data come from a probability sample or a randomized controlled experi-
ment (supra Sections II.A–B), the statistical model may be connected tightly to 
the actual data collection process. In other situations, using the model may be 
tantamount to assuming that a sample of convenience is like a random sample, 
or that an observational study is like a randomized experiment. With the Nixon 
papers, the appraisers drew a random sample, and that justified the statistical 

93. In Cimino v. Raymark Industries, Inc., 751 F. Supp. 649 (E.D. Tex. 1990), rev’d, 151 F.3d 297 
(5th Cir. 1998), the district court drew certain random samples from more than 6000 pending asbestos 
cases, tried these cases, and used the results to estimate the total award to be given to all plaintiffs 
in the pending cases. The court then held a hearing to determine whether the samples were large 
enough to provide accurate estimates. The court’s expert, an educational psychologist, testified that 
the estimates were accurate because the samples matched the population on such characteristics as race 
and the percentage of plaintiffs still alive. Id. at 664. However, the matches occurred only in the sense 
that population characteristics fell within 99% confidence intervals computed from the samples. The 
court thought that matches within the 99% confidence intervals proved more than matches within 95% 
intervals. Id. This is backward. To be correct in a few instances with a 99% confidence interval is not 
very impressive—by definition, such intervals are broad enough to ensure coverage 99% of the time.

94. In Hilao v. Estate of Marcos, 103 F.3d 767 (9th Cir. 1996), for example, “an expert on sta-
tistics . . . testified that . . . a random sample of 137 claims would achieve ‘a 95% statistical probability 
that the same percentage determined to be valid among the examined claims would be applicable to 
the totality of [9541 facially valid] claims filed.’” Id. at 782. There is no 95% “statistical probability” 
that a percentage computed from a sample will be “applicable” to a population. One can compute 
a confidence interval from a random sample and be 95% confident that the interval covers some 
parameter. The computation can be done for a sample of virtually any size, with larger samples giv-
ing smaller intervals. What is missing from the opinion is a discussion of the widths of the relevant 
intervals. For the same reason, it is meaningless to testify, as an expert did in Ayyad v. Sprint Spectrum, 
L.P., No. RG03-121510 (Cal. Super. Ct., Alameda County) (transcript, May 28, 2008, at 730), that 
a simple regression equation is trustworthy because the coefficient of the explanatory variable has “an 
extremely high indication of reliability to more than 99% confidence level.”

95. With the Nixon papers, one parameter is the average value of all 20,000 boxes, and another 
parameter is the standard deviation of the 20,000 values. These parameters can be used to approximate 
the distribution of the sample average. See infra Appendix. Regression models and their parameters are 
discussed infra Section V and in Rubinfeld, supra note 21.

http://nap.nationalacademies.org/13163


Reference Manual on Scientific Evidence: Third Edition

Copyright National Academy of Sciences. All rights reserved.

Reference Guide on Statistics

249

 calculations—if not the appraised values themselves. In many contexts, the choice 
of an appropriate statistical model is less than obvious. When a model does not 
fit the data collection process, estimates and standard errors will not be probative.

Standard errors and confidence intervals generally ignore systematic errors 
such as selection bias or nonresponse bias (supra Sections II.B.1–2). For example, 
after reviewing studies to see whether a particular drug caused birth defects, a 
court observed that mothers of children with birth defects may be more likely to 
remember taking a drug during pregnancy than mothers with normal children. 
This selective recall would bias comparisons between samples from the two groups 
of women. The standard error for the estimated difference in drug usage between 
the groups would ignore this bias, as would the confidence interval.96

B. Significance Levels and Hypothesis Tests

1. What Is the p-value?

In 1969, Dr. Benjamin Spock came to trial in the U.S. District Court for Massa-
chusetts. The charge was conspiracy to violate the Military Service Act. The jury 
was drawn from a panel of 350 persons selected by the clerk of the court. The 
panel included only 102 women—substantially less than 50%—although a major-
ity of the eligible jurors in the community were female. The shortfall in women 
was especially poignant in this case: “Of all defendants, Dr. Spock, who had given 
wise and welcome advice on child-rearing to millions of mothers, would have 
liked women on his jury.”97 

Can the shortfall in women be explained by the mere play of random chance? 
To approach the problem, a statistician would formulate and test a null hypothesis. 
Here, the null hypothesis says that the panel is like 350 persons drawn at random 
from a large population that is 50% female. The expected number of women drawn 
would then be 50% of 350, which is 175. The observed number of women is 102. 
The shortfall is 175 - 102 = 73. How likely is it to find a disparity this large or 
larger, between observed and expected values? The probability is called p, or the 
p-value.

96. Brock v. Merrell Dow Pharms., Inc., 874 F.2d 307, 311–12 (5th Cir.), modified, 884 F.2d 
166 (5th Cir. 1989). In Brock, the court stated that the confidence interval took account of bias (in 
the form of selective recall) as well as random error. 874 F.2d at 311–12. This is wrong. Even if the 
sampling error were nonexistent—which would be the case if one could interview every woman who 
had a child during the period that the drug was available—selective recall would produce a difference 
in the percentages of reported drug exposure between mothers of children with birth defects and those 
with normal children. In this hypothetical situation, the standard error would vanish. Therefore, the 
standard error could disclose nothing about the impact of selective recall.

97. Hans Zeisel, Dr. Spock and the Case of the Vanishing Women Jurors, 37 U. Chi. L. Rev. 1 
(1969). Zeisel’s reasoning was different from that presented in this text. The conviction was reversed 
on appeal without reaching the issue of jury selection. United States v. Spock, 416 F.2d 165 (1st Cir. 
1965).
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The p-value is the probability of getting data as extreme as, or more extreme 
than, the actual data—given that the null hypothesis is true. In the example, p 
turns out to be essentially zero. The discrepancy between the observed and the 
expected is far too large to explain by random chance. Indeed, even if the panel 
had included 155 women, the p-value would only be around 0.02, or 2%.98 (If 
the population is more than 50% female, p will be even smaller.) In short, the jury 
panel was nothing like a random sample from the community.

Large p-values indicate that a disparity can easily be explained by the play 
of chance: The data fall within the range likely to be produced by chance varia-
tion. On the other hand, if p is very small, something other than chance must 
be involved: The data are far away from the values expected under the null 
 hypothesis. Significance testing often seems to involve multiple negatives. This is 
because a statistical test is an argument by contradiction.

With the Dr. Spock example, the null hypothesis asserts that the jury panel is 
like a random sample from a population that is 50% female. The data contradict 
this null hypothesis because the disparity between what is observed and what is 
expected (according to the null) is too large to be explained as the product of ran-
dom chance. In a typical jury discrimination case, small p-values help a defendant 
appealing a conviction by showing that the jury panel is not like a random sample 
from the relevant population; large p-values hurt. In the usual employment con-
text, small p-values help plaintiffs who complain of discrimination—for example, 
by showing that a disparity in promotion rates is too large to be explained by 
chance; conversely, large p-values would be consistent with the defense argument 
that the disparity is just due to chance.

Because p is calculated by assuming that the null hypothesis is correct, p does 
not give the chance that the null is true. The p-value merely gives the chance 
of getting evidence against the null hypothesis as strong as or stronger than the 
evidence at hand. Chance affects the data, not the hypothesis. According to the 
frequency theory of statistics, there is no meaningful way to assign a numerical 
probability to the null hypothesis. The correct interpretation of the p-value can 
therefore be summarized in two lines:

p is the probability of extreme data given the null hypothesis.
p is not the probability of the null hypothesis given extreme data.99

98. With 102 women out of 350, the p-value is about 2/1015, where 1015 is 1 followed by 
15 zeros, that is, a quadrillion. See infra Appendix for the calculations.

99. Some opinions present a contrary view. E.g., Vasquez v. Hillery, 474 U.S. 254, 259 n.3 
(1986) (“the District Court . . . ultimately accepted . . . a probability of 2 in 1000 that the phenomenon 
was attributable to chance”); Nat’l Abortion Fed. v. Ashcroft, 330 F. Supp. 2d 436 (S.D.N.Y. 2004), 
aff’d in part, 437 F.3d 278 (2d Cir. 2006), vacated, 224 Fed. App’x. 88 (2d Cir. 2007) (“According to Dr. 
Howell, . . . a ‘P value’ of 0.30 . . . indicates that there is a thirty percent probability that the results 
of the . . . [s]tudy were merely due to chance alone.”). Such statements confuse the probability of the 
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To recapitulate the logic of significance testing: If p is small, the observed 
data are far from what is expected under the null hypothesis—too far to be readily 
explained by the operations of chance. That discredits the null hypothesis.

Computing p-values requires statistical expertise. Many methods are available, 
but only some will fit the occasion. Sometimes standard errors will be part of the 
analysis; other times they will not be. Sometimes a difference of two standard 
errors will imply a p-value of about 5%; other times it will not. In general, the 
p-value depends on the model, the size of the sample, and the sample statistics.

2. Is a difference statistically significant?

If an observed difference is in the middle of the distribution that would be 
expected under the null hypothesis, there is no surprise. The sample data are of the 
type that often would be seen when the null hypothesis is true. The difference is 
not significant, as statisticians say, and the null hypothesis cannot be rejected. On 
the other hand, if the sample difference is far from the expected value—according 
to the null hypothesis—then the sample is unusual. The difference is significant, 
and the null hypothesis is rejected. Statistical significance is determined by com-
paring p to a preset value, called the significance level.100 The null hypothesis is 
rejected when p falls below this level.

In practice, statistical analysts typically use levels of 5% and 1%.101 The 
5% level is the most common in social science, and an analyst who speaks of sig-
nificant results without specifying the threshold probably is using this figure. An 
unexplained reference to highly significant results probably means that p is less 

kind of outcome observed, which is computed under some model of chance, with the probability that 
chance is the explanation for the outcome—the “transposition fallacy.” 

Instances of the transposition fallacy in criminal cases are collected in David H. Kaye et al., The 
New Wigmore: A Treatise on Evidence: Expert Evidence §§ 12.8.2(b) & 14.1.2 (2d ed. 2011). In 
McDaniel v. Brown, 130 S. Ct. 665 (2010), for example, a DNA analyst suggested that a random match 
probability of 1/3,000,000 implied a .000033 probability that the DNA was not the source of the 
DNA found on the victim’s clothing. See David H. Kaye, “False But Highly Persuasive”: How Wrong 
Were the Probability Estimates in McDaniel v. Brown? 108 Mich. L. Rev. First Impressions 1 (2009).

100. Statisticians use the Greek letter alpha (a) to denote the significance level; a gives the 
chance of getting a significant result, assuming that the null hypothesis is true. Thus, a represents the 
chance of a false rejection of the null hypothesis (also called a false positive, a false alarm, or a Type I 
error). For example, suppose a = 5%. If investigators do many studies, and the null hypothesis hap-
pens to be true in each case, then about 5% of the time they would obtain significant results—and 
falsely reject the null hypothesis.

101. The Supreme Court implicitly referred to this practice in Castaneda v. Partida, 430 U.S. 
482, 496 n.17 (1977), and Hazelwood School District v. United States, 433 U.S. 299, 311 n.17 (1977). 
In these footnotes, the Court described the null hypothesis as “suspect to a social scientist” when a 
statistic from “large samples” falls more than “two or three standard deviations” from its expected value 
under the null hypothesis. Although the Court did not say so, these differences produce p-values of 
about 5% and 0.3% when the statistic is normally distributed. The Court’s standard deviation is our 
standard error.
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than 1%. These levels of 5% and 1% have become icons of science and the legal 
process. In truth, however, such levels are at best useful conventions.

Because the term “significant” is merely a label for a certain kind of p-value, 
significance is subject to the same limitations as the underlying p-value. Thus, 
significant differences may be evidence that something besides random error is at 
work. They are not evidence that this something is legally or practically impor-
tant. Statisticians distinguish between statistical and practical significance to make 
the point. When practical significance is lacking—when the size of a disparity is 
negligible—there is no reason to worry about statistical significance.102

It is easy to mistake the p-value for the probability of the null hypothesis given 
the data (supra Section IV.B.1). Likewise, if results are significant at the 5% level, 
it is tempting to conclude that the null hypothesis has only a 5% chance of being 
correct.103 This temptation should be resisted. From the frequentist perspective, 
statistical hypotheses are either true or false. Probabilities govern the samples, not 
the models and hypotheses. The significance level tells us what is likely to  happen 
when the null hypothesis is correct; it does not tell us the probability that the 
hypothesis is true. Significance comes no closer to expressing the probability that 
the null hypothesis is true than does the underlying p-value.

3. Tests or interval estimates?

How can a highly significant difference be practically insignificant? The reason 
is simple: p depends not only on the magnitude of the effect, but also on the 
sample size (among other things). With a huge sample, even a tiny effect will be 

102. E.g., Waisome v. Port Auth., 948 F.2d 1370, 1376 (2d Cir. 1991) (“though the disparity 
was found to be statistically significant, it was of limited magnitude.”); United States v. Henderson, 
409 F.3d 1293, 1306 (11th Cir. 2005) (regardless of statistical significance, excluding law enforcement 
officers from jury service does not have a large enough impact on the composition of grand juries 
to violate the Jury Selection and Service Act); cf. Thornburg v. Gingles, 478 U.S. 30, 53–54 (1986) 
(repeating the district court’s explanation of why “the correlation between the race of the voter and 
the voter’s choice of certain candidates was [not only] statistically significant,” but also “so marked 
as to be substantively significant, in the sense that the results of the individual election would have 
been different depending upon whether it had been held among only the white voters or only the 
black voters.”).

103. E.g., Waisome, 948 F.2d at 1376 (“Social scientists consider a finding of two standard 
deviations significant, meaning there is about one chance in 20 that the explanation for a deviation 
could be random . . . .”); Adams v. Ameritech Serv., Inc., 231 F.3d 414, 424 (7th Cir. 2000) (“Two 
standard deviations is normally enough to show that it is extremely unlikely (. . . less than a 5% 
probability) that the disparity is due to chance”); Magistrini v. One Hour Martinizing Dry  Cleaning, 
180 F. Supp. 2d 584, 605 n.26 (D.N.J. 2002) (a “statistically significant . . . study shows that there 
is only 5% probability that an observed association is due to chance.”); cf. Giles v. Wyeth, Inc., 500 
F. Supp. 2d 1048, 1056 (S.D. Ill. 2007) (“While [plaintiff] admits that a p-value of .15 is three times 
higher than what scientists generally consider statistically significant—that is, a p-value of .05 or 
lower—she maintains that this “represents 85% certainty, which meets any conceivable concept of 
preponderance of the evidence.”).
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highly significant.104 For example, suppose that a company hires 52% of male job 
applicants and 49% of female applicants. With a large enough sample, a statisti-
cian could compute an impressively small p-value. This p-value would confirm 
that the difference does not result from chance, but it would not convert a trivial 
difference (52% versus 49% ) into a substantial one.105 In short, the p-value does 
not measure the strength or importance of an association.

A “significant” effect can be small. Conversely, an effect that is “not signifi-
cant” can be large. By inquiring into the magnitude of an effect, courts can avoid 
being misled by p-values. To focus attention on more substantive concerns—the 
size of the effect and the precision of the statistical analysis—interval estimates 
(e.g., confidence intervals) may be more valuable than tests. Seeing a plausible 
range of values for the quantity of interest helps describe the statistical uncertainty 
in the estimate.

4. Is the sample statistically significant?

Many a sample has been praised for its statistical significance or blamed for its lack 
thereof. Technically, this makes little sense. Statistical significance is about the 
difference between observations and expectations. Significance therefore applies 
to statistics computed from the sample, but not to the sample itself, and certainly 
not to the size of the sample. Findings can be statistically significant. Differences 
can be statistically significant (supra Section IV.B.2). Estimates can be statistically 
significant (infra Section V.D.2). By contrast, samples can be representative or 
unrepresentative. They can be chosen well or badly (supra Section II.B.1). They 
can be large enough to give reliable results or too small to bother with (supra 
Section IV.A.3). But samples cannot be “statistically significant,” if this technical 
phrase is to be used as statisticians use it.

C. Evaluating Hypothesis Tests

1. What is the power of the test?

When a p-value is high, findings are not significant, and the null hypothesis is not 
rejected. This could happen for at least two reasons:

104. See supra Section IV.B.2. Although some opinions seem to equate small p-values with 
“gross” or “substantial” disparities, most courts recognize the need to decide whether the underlying 
sample statistics reveal that a disparity is large. E.g., Washington v. People, 186 P.3d 594 (Colo. 2008) 
(jury selection).

105. Cf. Frazier v. Garrison Indep. Sch. Dist., 980 F.2d 1514, 1526 (5th Cir. 1993) (rejecting 
claims of intentional discrimination in the use of a teacher competency examination that resulted in 
retention rates exceeding 95% for all groups); Washington, 186 P.2d 594 (although a jury selection 
practice that reduced the representation of “African-Americans [from] 7.7 percent of the population 
[to] 7.4 percent of the county’s jury panels produced a highly statistically significant disparity, the small 
degree of exclusion was not constitutionally significant.”).
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1. The null hypothesis is true.
2. The null is false—but, by chance, the data happened to be of the kind 

expected under the null.

If the power of a statistical study is low, the second explanation may be plau-
sible. Power is the chance that a statistical test will declare an effect when there 
is an effect to be declared.106 This chance depends on the size of the effect and 
the size of the sample. Discerning subtle differences requires large samples; small 
samples may fail to detect substantial differences.

When a study with low power fails to show a significant effect, the results 
may therefore be more fairly described as inconclusive than negative. The proof 
is weak because power is low. On the other hand, when studies have a good 
chance of detecting a meaningful association, failure to obtain significance can be 
persuasive evidence that there is nothing much to be found.107

2. What about small samples?

For simplicity, the examples of statistical inference discussed here (supra Sec-
tions IV.A–B) were based on large samples. Small samples also can provide useful 

106. More precisely, power is the probability of rejecting the null hypothesis when the alterna-
tive hypothesis (infra Section IV.C.5) is right. Typically, this probability will depend on the values of 
unknown parameters, as well as the preset significance level a. The power can be computed for any 
value of a and any choice of parameters satisfying the alternative hypothesis. See infra Appendix for 
an example. Frequentist hypothesis testing keeps the risk of a false positive to a specified level (such 
as a = 5%) and then tries to maximize power. 

Statisticians usually denote power by the Greek letter beta (β). However, some authors use β to 
denote the probability of accepting the null hypothesis when the alternative hypothesis is true; this usage 
is fairly standard in epidemiology. Accepting the null hypothesis when the alternative holds true is a 
false negative (also called a Type II error, a missed signal, or a false acceptance of the null hypothesis). 

The chance of a false negative may be computed from the power. Some commentators have 
claimed that the cutoff for significance should be chosen to equalize the chance of a false positive and 
a false negative, on the ground that this criterion corresponds to the more-probable-than-not burden 
of proof. The argument is fallacious, because a and β do not give the probabilities of the null and 
alternative hypotheses; see supra Sections IV.B.1–2; supra note 34. See also D.H. Kaye, Hypothesis Testing 
in the Courtroom, in Contributions to the Theory and Application of Statistics: A Volume in Honor of 
Herbert Solomon 331, 341–43 (Alan E. Gelfand ed., 1987).

107. Some formal procedures (meta-analysis) are available to aggregate results across studies. 
See, e.g., In re Bextra and Celebrex Marketing Sales Practices and Prod. Liab. Litig., 524 F. Supp. 
2d 1166, 1174, 1184 (N.D. Cal. 2007) (holding that “[a] meta-analysis of all available published and 
unpublished randomized clinical trials” of certain pain-relief medicine was admissible). In principle, 
the power of the collective results will be greater than the power of each study. However, these 
procedures have their own weakness. See, e.g., Richard A. Berk & David A. Freedman, Statistical 
Assumptions as Empirical Commitments, in Punishment and Social Control: Essays in Honor of Sheldon 
Messinger 235, 244–48 (T.G. Blomberg & S. Cohen eds., 2d ed. 2003); Michael Oakes, Statistical 
Inference: A Commentary for the Social and Behavioral Sciences (1986); Diana B. Petitti, Meta-
Analysis, Decision Analysis, and Cost-Effectiveness Analysis Methods for Quantitative Synthesis in 
Medicine (2d ed. 2000).
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information. Indeed, when confidence intervals and p-values can be computed, 
the interpretation is the same with small samples as with large ones.108 The con-
cern with small samples is not that they are beyond the ken of statistical theory, 
but that

1  The underlying assumptions are hard to validate.
2. Because approximations based on the normal curve generally cannot be 

used, confidence intervals may be difficult to compute for parameters of 
interest. Likewise, p-values may be difficult to compute for hypotheses 
of interest.109

3. Small samples may be unreliable, with large standard errors, broad confi-
dence intervals, and tests having low power.

3. One tail or two?

In many cases, a statistical test can be done either one-tailed or two-tailed; the 
second method often produces a p-value twice as big as the first method. The 
methods are easily explained with a hypothetical example. Suppose we toss a coin 
1000 times and get 532 heads. The null hypothesis to be tested asserts that the 
coin is fair. If the null is correct, the chance of getting 532 or more heads is 2.3%. 
That is a one-tailed test, whose p-value is 2.3%. To make a two-tailed test, the 
statistician computes the chance of getting 532 or more heads—or 500 - 32 = 468 
heads or fewer. This is 4.6%. In other words, the two-tailed p-value is 4.6%. 
Because small p-values are evidence against the null hypothesis, the one-tailed test 
seems to produce stronger evidence than its two-tailed counterpart. However, 
the advantage is largely illusory, as the example suggests. (The two-tailed test may 
seem artificial, but it offers some protection against possible artifacts resulting from 
multiple testing—the topic of the next section.)

Some courts and commentators have argued for one or the other type of test, 
but a rigid rule is not required if significance levels are used as guidelines rather 
than as mechanical rules for statistical proof.110 One-tailed tests often make it 

108. Advocates sometimes contend that samples are “too small to allow for meaningful statistical 
analysis,” United States v. New York City Bd. of Educ., 487 F. Supp. 2d 220, 229 (E.D.N.Y. 2007), 
and courts often look to the size of samples from earlier cases to determine whether the sample data 
before them are admissible or convincing. Id. at 230; Timmerman v. U.S. Bank, 483 F.3d 1106, 1116 
n.4 (10th Cir. 2007). However, a meaningful statistical analysis yielding a significant result can be based 
on a small sample, and reliability does not depend on sample size alone (see supra Section IV.A.3, infra 
Section V.C.1). Well-known small-sample techniques include the sign test and Fisher’s exact test. 
E.g., Michael O. Finkelstein & Bruce Levin, Statistics for Lawyers 154–56, 339–41 (2d ed. 2001); see 
generally E.L. Lehmann & H.J.M. d’Abrera, Nonparametrics (2d ed. 2006).

109. With large samples, approximate inferences (e.g., based on the central limit theorem, see 
infra Appendix) may be quite adequate. These approximations will not be satisfactory for small samples.

110. See, e.g., United States v. State of Delaware, 93 Fair Empl. Prac. Cas. (BNA) 1248, 2004 
WL 609331, *10 n.4 (D. Del. 2004). According to formal statistical theory, the choice between one 
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easier to reach a threshold such as 5%, at least in terms of appearance. However, 
if we recognize that 5% is not a magic line, then the choice between one tail 
and two is less important—as long as the choice and its effect on the p-value are 
made explicit.

4. How many tests have been done?

Repeated testing complicates the interpretation of significance levels. If enough 
comparisons are made, random error almost guarantees that some will yield “sig-
nificant” findings, even when there is no real effect. To illustrate the point, con-
sider the problem of deciding whether a coin is biased. The probability that a fair 
coin will produce 10 heads when tossed 10 times is (1/2)10 = 1/1024. Observing 
10 heads in the first 10 tosses, therefore, would be strong evidence that the coin 
is biased. Nonetheless, if a fair coin is tossed a few thousand times, it is likely that 
at least one string of ten consecutive heads will appear. Ten heads in the first ten 
tosses means one thing; a run of ten heads somewhere along the way to a few 
thousand tosses of a coin means quite another. A test—looking for a run of ten 
heads—can be repeated too often.

Artifacts from multiple testing are commonplace. Because research that fails to 
uncover significance often is not published, reviews of the literature may produce 
an unduly large number of studies finding statistical significance.111 Even a single 
researcher may examine so many different relationships that a few will achieve 
statistical significance by mere happenstance. Almost any large dataset—even pages 
from a table of random digits—will contain some unusual pattern that can be 
uncovered by diligent search. Having detected the pattern, the analyst can perform 
a statistical test for it, blandly ignoring the search effort. Statistical significance is 
bound to follow.

There are statistical methods for dealing with multiple looks at the data, 
which permit the calculation of meaningful p-values in certain cases.112 However, 
no general solution is available, and the existing methods would be of little help 
in the typical case where analysts have tested and rejected a variety of models 
before arriving at the one considered the most satisfactory (see infra Section V on 
regression models). In these situations, courts should not be overly impressed with 

tail or two can sometimes be made by considering the exact form of the alternative hypothesis (infra 
Section IV.C.5). But see Freedman et al., supra note 12, at 547–50. One-tailed tests at the 5% level 
are viewed as weak evidence—no weaker standard is commonly used in the technical literature. 
One-tailed tests are also called one-sided (with no pejorative intent); two-tailed tests are two-sided.

111. E.g., Philippa J. Easterbrook et al., Publication Bias in Clinical Research, 337 Lancet 867 
(1991); John P.A. Ioannidis, Effect of the Statistical Significance of Results on the Time to Completion and 
Publication of Randomized Efficacy Trials, 279 JAMA 281 (1998); Stuart J. Pocock et al., Statistical Problems 
in the Reporting of Clinical Trials: A Survey of Three Medical Journals, 317 New Eng. J. Med. 426 (1987).

112. See, e.g., Sandrine Dudoit & Mark J. van der Laan, Multiple Testing Procedures with 
Applications to Genomics (2008).

http://nap.nationalacademies.org/13163


Reference Manual on Scientific Evidence: Third Edition

Copyright National Academy of Sciences. All rights reserved.

Reference Guide on Statistics

257

claims that estimates are significant. Instead, they should be asking how analysts 
developed their models.113

5. What are the rival hypotheses?

The p-value of a statistical test is computed on the basis of a model for the data: 
the null hypothesis. Usually, the test is made in order to argue for the alternative 
hypothesis: another model. However, on closer examination, both models may 
prove to be unreasonable. A small p-value means something is going on besides 
random error. The alternative hypothesis should be viewed as one possible expla-
nation, out of many, for the data.

In Mapes Casino, Inc. v. Maryland Casualty Co.,114 the court recognized the 
importance of explanations that the proponent of the statistical evidence had failed 
to consider. In this action to collect on an insurance policy, Mapes sought to quan-
tify its loss from theft. It argued that employees were using an intermediary to cash 
in chips at other casinos. The casino established that over an 18-month period, 
the win percentage at its craps tables was 6%, compared to an expected value of 
20%. The statistics proved that something was wrong at the craps tables—the dis-
crepancy was too big to explain as the product of random chance. But the court 
was not convinced by plaintiff ’s alternative hypothesis. The court pointed to other 
possible explanations (Runyonesque activities such as skimming, scamming, and 
crossroading) that might have accounted for the discrepancy without implicating 
the suspect employees.115 In short, rejection of the null hypothesis does not leave 
the proffered alternative hypothesis as the only viable explanation for the data.116

113. Intuition may suggest that the more variables included in the model, the better. However, 
this idea often turns out to be wrong. Complex models may reflect only accidental features of the data. 
Standard statistical tests offer little protection against this possibility when the analyst has tried a variety 
of models before settling on the final specification. See authorities cited, supra note 21.

114. 290 F. Supp. 186 (D. Nev. 1968).
115. Id. at 193. Skimming consists of “taking off the top before counting the drop,” scamming 

is “cheating by collusion between dealer and player,” and crossroading involves “professional cheaters 
among the players.” Id. In plainer language, the court seems to have ruled that the casino itself might 
be cheating, or there could have been cheaters other than the particular employees identified in the 
case. At the least, plaintiff ’s statistical evidence did not rule out such possibilities. Compare EEOC v. 
Sears, Roebuck & Co., 839 F.2d 302, 312 & n.9, 313 (7th Cir. 1988) (EEOC’s regression studies 
showing significant differences did not establish liability because surveys and testimony supported the 
rival hypothesis that women generally had less interest in commission sales positions), with EEOC v. 
General Tel. Co., 885 F.2d 575 (9th Cir. 1989) (unsubstantiated rival hypothesis of “lack of interest” 
in “nontraditional” jobs insufficient to rebut prima facie case of gender discrimination); cf. supra Sec-
tion II.A (problem of confounding).

116. E.g., Coleman v. Quaker Oats Co., 232 F.3d 1271, 1283 (9th Cir. 2000) (a disparity with 
a p-value of “3 in 100 billion” did not demonstrate age discrimination because “Quaker never con-
tends that the disparity occurred by chance, just that it did not occur for discriminatory reasons. When 
other pertinent variables were factored in, the statistical disparity diminished and finally disappeared.”).
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D. Posterior Probabilities
Standard errors, p-values, and significance tests are common techniques for assess-
ing random error. These procedures rely on sample data and are justified in terms 
of the operating characteristics of statistical procedures.117 However, frequentist 
statisticians generally will not compute the probability that a particular hypothesis 
is correct, given the data.118 For example, a frequentist may postulate that a coin is 
fair: There is a 50-50 chance of landing heads, and successive tosses are indepen-
dent. This is viewed as an empirical statement—potentially falsifiable—about the 
coin. It is easy to calculate the chance that a fair coin will turn up heads in the next 
10 tosses: The answer (see supra Section IV.C.4) is 1/1024. Therefore, observing 
10 heads in a row brings into serious doubt the initial hypothesis of fairness.

But what of the converse probability: If the coin does land heads 10 times, 
what is the chance that it is fair?119 To compute such converse probabilities, it is 
necessary to postulate initial probabilities that the coin is fair, as well as probabili-
ties of unfairness to various degrees. In the frequentist theory of inference, such 
postulates are untenable: Probabilities are objective features of the situation that 
specify the chances of events or effects, not hypotheses or causes. 

By contrast, in the Bayesian approach, probabilities represent subjective 
degrees of belief about hypotheses or causes rather than objective facts about 
observations. The observer must quantify beliefs about the chance that the coin 
is unfair to various degrees—in advance of seeing the data.120 These subjective 
probabilities, like the probabilities governing the tosses of the coin, are set up to 
obey the axioms of probability theory. The probabilities for the various  hypotheses 
about the coin, specified before data collection, are called prior probabilities.

117. Operating characteristics include the expected value and standard error of estimators, prob-
abilities of error for statistical tests, and the like.

118. In speaking of “frequentist statisticians” or “Bayesian statisticians,” we do not mean to sug-
gest that all statisticians fall on one side of the philosophical divide or the other. These are archetypes. 
Many practicing statisticians are pragmatists, using whatever procedure they think is appropriate for 
the occasion, and not concerning themselves greatly with foundational issues. 

119. We call this a converse probability because it is of the form P(H0|data) rather than 
P(data|H0); an equivalent phrase, “inverse probability,” also is used. Treating P(data|H0) as if it were 
the converse probability P(H0|data) is the transposition fallacy. For example, most U.S. senators are 
men, but few men are senators. Consequently, there is a high probability that an individual who is a 
senator is a man, but the probability that an individual who is a man is a senator is practically zero. 
For examples of the transposition fallacy in court opinions, see cases cited supra notes 98, 102. The 
frequentist p-value, P(data|H0), is generally not a good approximation to the Bayesian P(H0|data); the 
latter includes considerations of power and base rates.

120. For example, let p be the unknown probability that the coin lands heads. What is the 
chance that p exceeds 0.1? 0.6? The Bayesian statistician must be prepared to answer such questions. 
Bayesian procedures are sometimes defended on the ground that the beliefs of any rational observer 
must conform to the Bayesian rules. However, the definition of “rational” is purely formal. See Peter 
C. Fishburn, The Axioms of Subjective Probability, 1 Stat. Sci. 335 (1986); Freedman, supra note 84; 
David Kaye, The Laws of Probability and the Law of the Land, 47 U. Chi. L. Rev. 34 (1979). 
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Prior probabilities can be updated, using Bayes’ rule, given data on how the 
coin actually falls. (The Appendix explains the rule.) In short, a Bayesian statisti-
cian can compute posterior probabilities for various hypotheses about the coin, 
given the data. These posterior probabilities quantify the statistician’s confidence 
in the hypothesis that a coin is fair.121 Although such posterior probabilities relate 
directly to hypotheses of legal interest, they are necessarily subjective, for they 
reflect not just the data but also the subjective prior probabilities—that is, degrees 
of belief about hypotheses formulated prior to obtaining data.

Such analyses have rarely been used in court, and the question of their 
forensic value has been aired primarily in the academic literature. Some statisti-
cians favor Bayesian methods, and some commentators have proposed using these 
methods in some kinds of cases.122 The frequentist view of statistics is more con-
ventional; subjective Bayesians are a well-established minority.123

121. Here, confidence has the meaning ordinarily ascribed to it, rather than the technical inter-
pretation applicable to a frequentist confidence interval. Consequently, it can be related to the burden 
of persuasion. See D.H. Kaye, Apples and Oranges: Confidence Coefficients and the Burden of Persuasion, 
73 Cornell L. Rev. 54 (1987).

122. See David H. Kaye et al., The New Wigmore: A Treatise on Evidence: Expert Evidence 
§§ 12.8.5, 14.3.2 (2d ed. 2010); David H. Kaye, Rounding Up the Usual Suspects: A Legal and Logical 
Analysis of DNA Database Trawls, 87 N.C. L. Rev. 425 (2009). In addition, as indicated in the Appen-
dix, Bayes’ rule is crucial in solving certain problems involving conditional probabilities of related 
events. For example, if the proportion of women with breast cancer in a region is known, along with 
the probability that a mammogram of an affected woman will be positive for cancer and that the 
mammogram of an unaffected woman will be negative, then one can compute the numbers of false-
positive and false-negative mammography results that would be expected to arise in a population-wide 
screening program. Using Bayes’ rule to diagnose a specific patient, however, is more problematic, 
because the prior probability that the patient has breast cancer may not equal the population propor-
tion. Nevertheless, to overcome the tendency to focus on a test result without considering the “base 
rate” at which a condition occurs, a diagnostician can apply Bayes’ rule to plausible base rates before 
making a diagnosis. Finally, Bayes’ rule also is valuable as a device to explicate the meaning of concepts 
such as error rates, probative value, and transposition. See, e.g., David H. Kaye, The Double Helix 
and the Law of Evidence (2010); Wigmore, supra, § 7.3.2; David H. Kaye & Jonathan J. Koehler, The 
Misquantification of Probative Value, 27 Law & Hum. Behav. 645 (2003).

123. “Objective Bayesians” use Bayes’ rule without eliciting prior probabilities from subjective 
beliefs. One strategy is to use preliminary data to estimate the prior probabilities and then apply Bayes’ 
rule to that empirical distribution. This “empirical Bayes” procedure avoids the charge of subjectiv-
ism at the cost of departing from a fully Bayesian framework. With ample data, however, it can be 
effective and the estimates or inferences can be understood in frequentist terms. Another “objective” 
approach is to use “noninformative” priors that are supposed to be independent of all data and prior 
beliefs. However, the choice of such priors can be questioned, and the approach has been attacked by 
frequentists and subjective Bayesians. E.g., Joseph B. Kadane, Is “Objective Bayesian Analysis” Objective, 
Bayesian, or Wise?, 1 Bayesian Analysis 433 (2006), available at http://ba.stat.cmu.edu/journal/2006/
vol01/issue03/kadane.pdf; Jon Williamson, Philosophies of Probability, in Philosophy of Mathematics 
493 (Andrew Irvine ed., 2009) (discussing the challenges to objective Bayesianism).
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V. Correlation and Regression
Regression models are used by many social scientists to infer causation from 
association. Such models have been offered in court to prove disparate impact in 
discrimination cases, to estimate damages in antitrust actions, and for many other 
purposes. Sections V.A, V.B, and V.C cover some preliminary material, showing 
how scatter diagrams, correlation coefficients, and regression lines can be used to 
summarize relationships between variables.124 Section V.D explains the ideas and 
some of the pitfalls.

A. Scatter Diagrams
The relationship between two variables can be graphed in a scatter diagram (also 
called a scatterplot or scattergram). We begin with data on income and education 
for a sample of 178 men, ages 25 to 34, residing in Kansas.125 Each person in 
the sample corresponds to one dot in the diagram. As indicated in Figure 5, the 
horizontal axis shows education, and the vertical axis shows income. Person A 
completed 12 years of schooling (high school) and had an income of $20,000. 
Person B completed 16 years of schooling (college) and had an income of $40,000.

124. The focus is on simple linear regression. See also Rubinfeld, supra note 21, and the Appen-
dix, infra, and Section II, supra, for further discussion of these ideas with an emphasis on econometrics.

125. These data are from a public-use CD, Bureau of the Census, U.S. Department of Com-
merce, for the March 2005 Current Population Survey. Income and education are self-reported. 
Income is censored at $100,000. For additional details, see Freedman et al., supra note 12, at A-11. 
Both variables in a scatter diagram have to be quantitative (with numerical values) rather than qualita-
tive (nonnumerical).

5-5 �xed image

Figure 5.  Plotting a scatter diagram. The horizontal axis shows educational level 
and the vertical axis shows income.
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Figure 6 is the scatter diagram for the Kansas data. The diagram confirms an 
obvious point. There is a positive association between income and education. In 
general, persons with a higher educational level have higher incomes. However, 
there are many exceptions to this rule, and the association is not as strong as one 
might expect.

B. Correlation Coefficients
Two variables are positively correlated when their values tend to go up or down 
together, such as income and education in Figure 5. The correlation coefficient 
(usually denoted by the letter r) is a single number that reflects the sign of an asso-
ciation and its strength. Figure 7 shows r for three scatter diagrams: In the first, 
there is no association; in the second, the association is positive and moderate; in 
the third, the association is positive and strong.

A correlation coefficient of 0 indicates no linear association between the 
variables. The maximum value for the coefficient is +1, indicating a perfect linear 
relationship: The dots in the scatter diagram fall on a straight line that slopes up. 
Sometimes, there is a negative association between two variables: Large values 
of one tend to go with small values of the other. The age of a car and its fuel 
economy in miles per gallon illustrate the idea. Negative association is indicated by 
negative values for r. The extreme case is an r of –1, indicating that all the points 
in the scatter diagram lie on a straight line that slopes down.

Weak associations are the rule in the social sciences. In Figure 5, the correla-
tion between income and education is about 0.4. The correlation between college 
grades and first-year law school grades is under 0.3 at most law schools, while the 

5-6 �xed image

Figure 6.  Scatter diagram for income and education: men ages 25 to 34 in Kansas.
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Figure 7.  The correlation coefficient measures the sign of a linear association 
and its strength.

5-7 �xed, broadside

correlation between LSAT scores and first-year grades is generally about 0.4.126 
The correlation between heights of fraternal twins is about 0.5. By contrast, the 
correlation between heights of identical twins is about 0.95.

1. Is the association linear?

The correlation coefficient has a number of limitations, to be considered in turn. 
The correlation coefficient is designed to measure linear association. Figure 8 
shows a strong nonlinear pattern with a correlation close to zero. The correlation 
coefficient is of limited use with nonlinear data.

2. Do outliers influence the correlation coefficient?

The correlation coefficient can be distorted by outliers—a few points that are far 
removed from the bulk of the data. The left-hand panel in Figure 9 shows that 
one outlier (lower right-hand corner) can reduce a perfect correlation to nearly 
 nothing. Conversely, the right-hand panel shows that one outlier (upper right-
hand corner) can raise a correlation of zero to nearly one. If there are extreme 
outliers in the data, the correlation coefficient is unlikely to be meaningful.

3. Does a confounding variable influence the coefficient?

The correlation coefficient measures the association between two variables. 
Researchers—and the courts—are usually more interested in causation. Causa-
tion is not the same as association. The association between two variables may 
be driven by a lurking variable that has been omitted from the analysis (supra 

126. Lisa Anthony Stilwell et al., Predictive Validity of the LSAT: A National Summary of the 
2001–2002 Correlation Studies 5, 8 (2003).
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5-8 �xed image

Figure 8.  The scatter diagram shows a strong nonlinear association with a cor-
relation coefficient close to zero. The correlation coefficient only 
measures the degree of linear association. 

Figure 9. The correlation coefficient can be distorted by outliers. 

5-9 �xed image

Section II.A). For an easy example, there is an association between shoe size and 
vocabulary among schoolchildren. However, learning more words does not cause 
the feet to get bigger, and swollen feet do not make children more articulate. In 
this case, the lurking variable is easy to spot—age. In more realistic examples, the 
lurking variable is harder to identify.127

127. Green et al., supra note 13, Section IV.C, provides one such example.
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In statistics, lurking variables are called confounders or confounding variables. 
Association often does reflect causation, but a large correlation coefficient is not 
enough to warrant causal inference. A large value of r only means that the depen-
dent variable marches in step with the independent one: Possible reasons include 
causation, confounding, and coincidence. Multiple regression is one method that 
attempts to deal with confounders (infra Section V.D).128

C. Regression Lines
The regression line can be used to describe a linear trend in the data. The regres-
sion line for income on education in the Kansas sample is shown in Figure 10. 
The height of the line estimates the average income for a given educational level. 
For example, the average income for people with 8 years of education is estimated 
at $21,100, indicated by the height of the line at 8 years. The average income for 
people with 16 years of education is estimated at $34,700.

Figure 11 combines the data in Figures 5 and 10: it shows the scatter diagram 
for income and education, with the regression line superimposed. The line shows 
the average trend of income as education increases. Thus, the regression line 
indicates the extent to which a change in one variable (income) is associated with 
a change in another variable (education).

128. See also Rubinfeld, supra note 21. The difference between experiments and observational 
studies is discussed supra Section II.B.

5-10 �xed image

Figure 10.  The regression line for income on education and its estimates.
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5-11 �xed image

Figure 11.  Scatter diagram for income and education, with the regression line 
indicating the trend.

1. What are the slope and intercept?

The regression line can be described in terms of its intercept and slope. Often, the 
slope is the more interesting statistic. In Figure 11, the slope is $1700 per year. On 
average, each additional year of education is associated with an additional $1700 
of income. Next, the intercept is $7500. This is an estimate of the average income 
for (hypothetical) persons with zero years of education.129 Figure 10 suggests this 
estimate may not be especially good. In general, estimates based on the regression 
line become less trustworthy as we move away from the bulk of the data.

The slope of the regression line has the same limitations as the correlation 
coefficient: (1) The slope may be misleading if the relationship is strongly non-
linear and (2) the slope may be affected by confounders. With respect to (1), the 
slope of $1700 per year in Figure 10 presents each additional year of education 
as having the same value, but some years of schooling surely are worth more and 

129. The regression line, like any straight line, has an equation of the form y = a + bx. Here, 
a is the intercept (the value of y when x = 0), and b is the slope (the change in y per unit change in 
x). In Figure 9, the intercept of the regression line is $7500 and the slope is $1700 per year. The line 
estimates an average income of $34,700 for people with 16 years of education. This may be computed 
from the intercept and slope as follows:

$7500 + ($1700 per year) × 16 years = $7500 + $22,200 = $34,700.

The slope b is the same anywhere along the line. Mathematically, that is what distinguishes straight 
lines from other curves. If the association is negative, the slope will be negative too. The slope is 
like the grade of a road, and it is negative if the road goes downhill. The intercept is like the starting 
elevation of a road, and it is computed from the data so that the line goes through the center of the 
scatter diagram, rather than being generally too high or too low.
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others less. With respect to (2), the association between education and income is 
no doubt causal, but there are other factors to consider, including family back-
ground. Compared to individuals who did not graduate from high school, people 
with college degrees usually come from richer and better educated families. Thus, 
college graduates have advantages besides education. As statisticians might say, 
the effects of family background are confounded with the effects of education. 
 Statisticians often use the guarded phrases “on average” and “associated with” 
when talking about the slope of the regression line. This is because the slope has 
limited utility when it comes to making causal inferences.

2. What is the unit of analysis?

If association between characteristics of individuals is of interest, these character-
istics should be measured on individuals. Sometimes individual-level data are not 
to be had, but rates or averages for groups are available. “Ecological” correlations 
are computed from such rates or averages. These correlations generally overstate 
the strength of an association. For example, average income and average education 
can be determined for men living in each state and in Washington, D.C. The cor-
relation coefficient for these 51 pairs of averages turns out to be 0.70. However, 
states do not go to school and do not earn incomes. People do. The correlation for 
income and education for men in the United States is only 0.42. The correlation 
for state averages overstates the correlation for individuals—a common tendency 
for ecological correlations.130

Ecological analysis is often seen in cases claiming dilution in voting strength 
of minorities. In this type of voting rights case, plaintiffs must prove three things: 
(1) the minority group constitutes a majority in at least one district of a proposed 
plan; (2) the minority group is politically cohesive, that is, votes fairly solidly for 
its preferred candidate; and (3) the majority group votes sufficiently as a bloc to 
defeat the minority-preferred candidate.131 The first requirement is compactness; 
the second and third define polarized voting.

130. Correlations are computed from the March 2005 Current Population Survey for men 
ages 25–64. Freedman et al., supra note 12, at 149. The ecological correlation uses only the average 
figures, but within each state there is a lot of spread about the average. The ecological correlation 
smoothes away this individual variation. Cf. Green et al., supra note 13, Section II.B.4 (suggesting 
that ecological studies of exposure and disease are “far from conclusive” because of the lack of data on 
confounding variables (a much more general problem) as well as the possible aggregation bias described 
here); David A. Freedman, Ecological Inference and the Ecological Fallacy, in 6 Int’l Encyclopedia of the 
Social and Behavioral Sciences 4027 (Neil J. Smelser & Paul B. Baltes eds., 2001).

131. See Thornburg v. Gingles, 478 U.S. 30, 50–51 (1986) (“First, the minority group must be 
able to demonstrate that it is sufficiently large and geographically compact to constitute a majority in 
a single-member district. . . . Second, the minority group must be able to show that it is politically 
cohesive. . . . Third, the minority must be able to demonstrate that the white majority votes sufficiently 
as a bloc to enable it . . . usually to defeat the minority’s preferred candidate.”). In subsequent cases, 
the Court has emphasized that these factors are not sufficient to make out a violation of section 2 of 
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The secrecy of the ballot box means that polarized voting cannot be directly 
observed. Instead, plaintiffs in voting rights cases rely on ecological regression, 
with scatter diagrams, correlations, and regression lines to estimate voting behavior 
by groups and demonstrate polarization. The unit of analysis typically is the pre-
cinct. For each precinct, public records can be used to determine the percentage of 
registrants in each demographic group of interest, as well as the percentage of the 
total vote for each candidate—by voters from all demographic groups combined. 
Plaintiffs’ burden is to determine the vote by each demographic group separately.

Figure 12 shows how the argument unfolds. Each point in the scatter diagram 
represents data for one precinct in the 1982 Democratic primary election for audi-
tor in Lee County, South Carolina. The horizontal axis shows the percentage of 
registrants who are white. The vertical axis shows the turnout rate for the white 
candidate. The regression line is plotted too. The slope would be interpreted as 
the difference between the white turnout rate and the black turnout rate for the 
white candidate. Furthermore, the intercept would be interpreted as the black 
turnout rate for the white candidate.132 The validity of such estimates is contested 
in the statistical literature.133

the Voting Rights Act. E.g., Johnson v. De Grandy, 512 U.S. 997, 1011 (1994) (“Gingles . . . clearly 
declined to hold [these factors] sufficient in combination, either in the sense that a court’s examination 
of relevant circumstances was complete once the three factors were found to exist, or in the sense that 
the three in combination necessarily and in all circumstances demonstrated dilution.”).

132. By definition, the turnout rate equals the number of votes for the candidate, divided by the 
number of registrants; the rate is computed separately for each precinct. The intercept of the line in 
Figure 11 is 4%, and the slope is 0.52. Plaintiffs would conclude that only 4% of the black registrants 
voted for the white candidate, while 4% + 52% = 56% of the white registrants voted for the white 
candidate, which demonstrates polarization.

133. For further discussion of ecological regression in this context, see D. James Greiner, Eco-
logical Inference in Voting Rights Act Disputes: Where Are We Now, and Where Do We Want to Be?, 47 
Jurimetrics J. 115 (2007); Bernard Grofman & Chandler Davidson, Controversies in Minority Vot-
ing: The Voting Rights Act in Perspective (1992); Stephen P. Klein & David A. Freedman, Ecologi-
cal Regression in Voting Rights Cases, 6 Chance 38 (Summer 1993). The use of ecological regression 
increased considerably after the Supreme Court noted in Thornburg v. Gingles, 478 U.S. 30, 53 n.20 
(1986), that “[t]he District Court found both methods [extreme case analysis and bivariate ecological 
regression analysis] standard in the literature for the analysis of racially polarized voting.” See, e.g., 
Cottier v. City of Martin, 445 F.3d 1113, 1118 (8th Cir. 2006) (ecological regression is one of the 
“proven approaches to evaluating elections”); Bruce M. Clarke & Robert Timothy Reagan, Fed. 
Judicial Ctr., Redistricting Litigation: An Overview of Legal, Statistical, and Case-Management Issues 
(2002); Greiner, supra, at 117, 121. Nevertheless, courts have cautioned against “overreliance on 
bivariate ecological regression” in light of the inherent limitations of the technique. Lewis v. Alamance 
County, 99 F.3d 600, 604 n.3 (4th Cir. 1996); Johnson v. Hamrick, 296 F.3d 1065, 1080 n.4 (11th 
Cir. 2002) (“as a general rule, homogenous precinct analysis may be more reliable than ecological 
regression.”). However, there are problems with both methods. See, e.g., Greiner, supra, at 123–39 
(arguing that homogeneous precinct analysis is fundamentally flawed and that courts need to be more 
discerning in dealing with ecological regression). 

Redistricting plans based predominantly on racial considerations are unconstitutional unless 
narrowly tailored to meet a compelling state interest. Shaw v. Reno, 509 U.S. 630 (1993). Whether 
compliance with the Voting Rights Act can be considered a compelling interest is an open ques-
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5-12 �xed image

Figure 12.  Turnout rate for the white candidate plotted against the percentage 
of registrants who are white. Precinct-level data, 1982 Democratic 
Primary for Auditor, Lee County, South Carolina.

Source: Data from James W. Loewen & Bernard Grofman, Recent Developments in Methods Used in Vote 
Dilution Litigation, 21 Urb. Law. 589, 591 tbl.1 (1989).

D. Statistical Models
Statistical models are widely used in the social sciences and in litigation. For 
example, the census suffers an undercount, more severe in certain places than 
others. If some statistical models are to be believed, the undercount can be 
 corrected—moving seats in Congress and millions of dollars a year in tax funds.134 
Other models purport to lift the veil of secrecy from the ballot box, enabling the 
experts to determine how minority groups have voted—a crucial step in voting 
rights litigation (supra Section V.C). This section discusses the statistical logic of 
regression models.

A regression model attempts to combine the values of certain variables (the 
independent variables) to get expected values for another variable (the dependent 
variable). The model can be expressed in the form of a regression equation. A 
simple regression equation has only one independent variable; a multiple regres-
sion equation has several independent variables. Coefficients in the equation will 
be interpreted as showing the effects of changing the corresponding variables. This 
is justified in some situations, as the next example demonstrates.

tion, but efforts to sustain racially motivated redistricting on this basis have not fared well before the 
Supreme Court. See Abrams v. Johnson, 521 U.S. 74 (1997); Shaw v. Hunt, 517 U.S. 899 (1996); 
Bush v. Vera, 517 U.S. 952 (1996).

134. See Brown et al., supra note 29; supra note 89.
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Hooke’s law (named after Robert Hooke, England, 1653–1703) describes 
how a spring stretches in response to a load: Strain is proportional to stress. To 
verify Hooke’s law experimentally, a physicist will make a number of observations 
on a spring. For each observation, the physicist hangs a weight on the spring and 
measures its length. A statistician could develop a regression model for these data: 

 length = a + b × weight + e. (1)

The error term, denoted by the Greek letter epsilon e, is needed because measured 
length will not be exactly equal to a + b × weight. If nothing else, measurement 
error must be reckoned with. The model takes e as “random error”—behaving 
like draws made at random with replacement from a box of tickets. Each ticket 
shows a potential error, which will be realized if that ticket is drawn. The average 
of the potential errors in the box is assumed to be zero.

Equation (1) has two parameters, a and b. These constants of nature char-
acterize the behavior of the spring: a is length under no load, and b is elasticity 
(the increase in length per unit increase in weight). By way of numerical illustra-
tion, suppose a is 400 and b is 0.05. If the weight is 1, the length of the spring is 
expected to be 

400 + 0.05 = 400.05.

If the weight is 3, the expected length is

400 + 3 × 0.05 = 400 + 0.15 = 400.15.

In either case, the actual length will differ from expected, by a random error e.
In standard statistical terminology, the e’s for different observations on the 

spring are assumed to be independent and identically distributed, with a mean of 
zero. Take the e’s for the first two observations. Independence means that the 
chances for the second e do not depend on outcomes for the first. If the errors are 
like draws made at random with replacement from a box of tickets, as we assumed 
earlier, that box will not change from one draw to the next— independence. 
“Identically distributed” means that the chance behavior of the two e’s is the 
same: They are drawn at random from the same box. (See infra Appendix for 
additional discussion.)

The parameters a and b in equation (1) are not directly observable, but they 
can be estimated by the method of least squares.135 Statisticians often denote esti-

135. It might seem that a is observable; after all, we can measure the length of the spring with 
no load. However, the measurement is subject to error, so we observe not a, but a + e. See equa-
tion (1). The parameters a and b can be estimated, even estimated very well, but they cannot be 
observed directly. The least squares estimates of a and b are the intercept and slope of the regression 
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mates by hats. Thus, â is the estimate for a, and b̂  is the estimate for b. The values 
of â and b̂  are chosen to minimize the sum of the squared prediction errors. These 
errors are also called residuals. They measure the difference between the actual 
length of the spring and the predicted length, the latter being â  + b̂  × weight:

 actual length = â + b̂  × weight + residual. (2)

Of course, no one really imagines there to be a box of tickets hidden in the 
spring. However, the variability of physical measurements (under many but by 
no means all circumstances) does seem to be remarkably like the variability in 
draws from a box.136 In short, the statistical model corresponds rather closely to 
the empirical phenomenon. 

Equation (1) is a statistical model for the data, with unknown parameters a 
and b. The error term e is not observable. The model is a theory—and a good 
one—about how the data are generated. By contrast, equation (2) is a regression 
equation that is fitted to the data: The intercept â, the slope b̂, and the residual can 
all be computed from the data. The results are useful because â is a good estimate 
for a, and b̂  is a good estimate for b. (Similarly, the residual is a good approxi-
mation to e.) Without the theory, these estimates would be less useful. Is there a 
theoretical model behind the data processing? Is the model justifiable? These ques-
tions can be critical when it comes to making statistical inferences from the data.

In social science applications, statistical models often are invoked without an 
independent theoretical basis. We give an example involving salary discrimination 
in the Appendix.137 The main ideas of such regression modeling can be captured 
in a hypothetical exchange between a plaintiff seeking to prove salary discrimi-
nation and a company denying the allegation. Such a dialog might proceed as 
follows:

1. Plaintiff argues that the defendant company pays male employees more 
than females, which establishes a prima facie case of discrimination. 

2. The company responds that the men are paid more because they are better 
educated and have more experience.

3. Plaintiff refutes the company’s theory by fitting a regression equation that 
includes a particular, presupposed relationship between salary (the depen-
dent variable) and some measures of education and experience. Plaintiff ’s 
expert reports that even after adjusting for differences in education and 

line. See supra Section V.C.1; Freedman et al., supra note 12, at 208–10. The method of least squares 
was developed by Adrien-Marie Legendre (France, 1752–1833) and Carl Friedrich Gauss (Germany, 
1777–1855) to fit astronomical orbits.

136. This is the Gauss model for measurement error. See Freedman et al., supra note 12, at 
450–52.

137. The Reference Guide to Multiple Regression in this manual describes a comparable 
example.
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experience in this specific manner, men earn more than women. This 
remaining difference in pay shows discrimination.

4. The company argues that the difference could be the result of chance, not 
discrimination.

5. Plaintiff replies that because the coefficient for gender in the model is 
statistically significant, chance is not a good explanation for the data.138

In step 3, the three explanatory variables are education (years of schooling 
completed), experience (years with the firm), and a dummy variable for gender 
(1 for men and 0 for women). These are supposed to predict salaries (dollars per 
year). The equation is a formal analog of Hooke’s law (equation 1). According to 
the model, an employee’s salary is determined as if by computing

 a + (b × education) + (c × experience) + (d × gender), (3)

and then adding an error e drawn at random from a box of tickets.139 The 
 parameters a, b, c, and d, are estimated from the data by the method of least squares. 

In step 5, the estimated coefficient d for the dummy variable turns out to be 
positive and statistically significant and is offered as evidence of disparate impact. 
Men earn more than women, even after adjusting for differences in background 
factors that might affect productivity. This showing depends on many assump-
tions built into the model.140 Hooke’s law—equation (1)—is relatively easy to test 
experimentally. For the salary discrimination model, validation would be difficult. 
When expert testimony relies on statistical models, the court may well inquire, 
what are the assumptions behind the model, and why do they apply to the case at 
hand? It might then be important to distinguish between two situations:

•	 The	nature	of	the	relationship	between	the	variables	is	known	and	regres-
sion is being used to make quantitative estimates of parameters in that 
relationship, or

•	 The	nature	of	the	relationship	is	largely	unknown	and	regression	is	being	
used to determine the nature of the relationship—or indeed whether any 
relationship exists at all.

138. In some cases, the p-value has been interpreted as the probability that defendants are inno-
cent of discrimination. However, as noted earlier, such an interpretation is wrong: p merely represents 
the probability of getting a large test statistic, given that the model is correct and the true coefficient 
for gender is zero (see supra Section IV.B, infra Appendix, Section D.2). Therefore, even if we grant 
the model, a p-value less than 50% does not demonstrate a preponderance of the evidence against the 
null hypothesis.

139. Expression (3) is the expected value for salary, given the explanatory variables (education, 
experience, gender). The error term is needed to account for deviations from expected: Salaries are not 
going to be predicted very well by linear combinations of variables such as education and experience.

140. See infra Appendix. 
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Regression was developed to handle situations of the first type, with Hooke’s law 
being an example. The basis for the second type of application is analogical, and 
the tightness of the analogy is an issue worth exploration.

In employment discrimination cases, and other contexts too, a wide variety 
of models can be used. This is only to be expected, because the science does not 
dictate specific equations. In a strongly contested case, each side will have its own 
model, presented by its own expert. The experts will reach opposite conclusions 
about discrimination. The dialog might continue with an exchange about which 
model is better. Although statistical assumptions are challenged in court from time 
to time, arguments more commonly revolve around the choice of variables. One 
model may be questioned because it omits variables that should be included—for 
example, skill levels or prior evaluations.141 Another model may be challenged 
because it includes tainted variables reflecting past discriminatory behavior by 
the firm.142 The court must decide which model—if either—fits the occasion.143 

The frequency with which regression models are used is no guarantee that 
they are the best choice for any particular problem. Indeed, from one perspective, 
a regression or other statistical model may seem to be a marvel of mathematical 
rigor. From another perspective, the model is a set of assumptions, supported only 
by the say-so of the testifying expert. Intermediate judgments are also possible.144

141. E.g., Bazemore v. Friday, 478 U.S. 385 (1986); In re Linerboard Antitrust Litig., 497 F. 
Supp. 2d 666 (E.D. Pa. 2007).

142. E.g., McLaurin v. Nat’l R.R. Passenger Corp., 311 F. Supp. 2d 61, 65–66 (D.D.C. 2004) 
(holding that the inclusion of two allegedly tainted variables was reasonable in light of an earlier 
consent decree).

143. E.g., Chang v. Univ. of R.I., 606 F. Supp. 1161, 1207 (D.R.I. 1985) (“it is plain to the 
court that [defendant’s] model comprises a better, more useful, more reliable tool than [plaintiff ’s] 
counterpart.”); Presseisen v. Swarthmore College, 442 F. Supp. 593, 619 (E.D. Pa. 1977) (“[E]ach 
side has done a superior job in challenging the other’s regression analysis, but only a mediocre job in 
supporting their own . . . and the Court is . . . left with nothing.”), aff’d, 582 F.2d 1275 (3d Cir. 1978).

144. See, e.g., David W. Peterson, Reference Guide on Multiple Regression, 36 Jurimetrics J. 213, 
214–15 (1996) (review essay); see supra note 21 for references to a range of academic opinion. More 
recently, some investigators have turned to graphical models. However, these models have serious 
weaknesses of their own. See, e.g., David A. Freedman, On Specifying Graphical Models for Causation, 
and the Identification Problem, 26 Evaluation Rev. 267 (2004).
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Appendix
A. Frequentists and Bayesians
The mathematical theory of probability consists of theorems derived from axioms 
and definitions. Mathematical reasoning is seldom controversial, but there may be 
disagreement as to how the theory should be applied. For example, statisticians 
may differ on the interpretation of data in specific applications. Moreover, there 
are two main schools of thought about the foundations of statistics: frequentist 
and Bayesian (also called objectivist and subjectivist).145

Frequentists see probabilities as empirical facts. When a fair coin is tossed, 
the probability of heads is 1/2; if the experiment is repeated a large number of 
times, the coin will land heads about one-half the time. If a fair die is rolled, the 
probability of getting an ace (one spot) is 1/6. If the die is rolled many times, an 
ace will turn up about one-sixth of the time.146 Generally, if a chance experiment 
can be repeated, the relative frequency of an event approaches (in the long run) 
its probability. By contrast, a Bayesian considers probabilities as representing not 
facts but degrees of belief: In whole or in part, probabilities are subjective.

Statisticians of both schools use conditional probability—that is, the prob-
ability of one event given that another has occurred. For example, suppose a coin 
is tossed twice. One event is that the coin will land HH. Another event is that at 
least one H will be seen. Before the coin is tossed, there are four possible, equally 
likely, outcomes: HH, HT, TH, TT. So the probability of HH is 1/4. However, if 
we know that at least one head has been obtained, then we can rule out two tails 
TT. In other words, given that at least one H has been obtained, the conditional 
probability of TT is 0, and the first three outcomes have conditional probability 
1/3 each. In particular, the conditional probability of HH is 1/3. This is usually 
written as P(HH|at least one H) = 1/3. More generally, the probability of an event 
C is denoted P(C); the conditional probability of D given C is written as P(D|C).

Two events C and D are independent if the conditional probability of D 
given that C occurs is equal to the conditional probability of D given that C does 
not occur. Statisticians use “~C” to denote the event that C does not occur. Thus 
C and D are independent if P(D|C) = P(D|~C). If C and D are independent, 
then the probability that both occur is equal to the product of the probabilities:

 P(C and D) = P(C ) × P(D). (A1)

145. But see supra note 123 (on “objective Bayesianism”).
146. Probabilities may be estimated from relative frequencies, but probability itself is a subtler 

idea. For example, suppose a computer prints out a sequence of 10 letters H and T (for heads and 
tails), which alternate between the two possibilities H and T as follows: H T H T H T H T H T. 
The relative frequency of heads is 5/10 or 50%, but it is not at all obvious that the chance of an H 
at the next position is 50%. There are difficulties in both the subjectivist and objectivist positions. See 
Freedman, supra note 84.
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This is the multiplication rule (or product rule) for independent events. If events 
are dependent, then conditional probabilities must be used:

 P(C and D) = P(C) × P(D|C). (A2)

This is the multiplication rule for dependent events.
Bayesian statisticians assign probabilities to hypotheses as well as to events; 

indeed, for them, the distinction between hypotheses and events may not be 
a sharp one. We turn now to Bayes’ rule. If H0 and H1 are two hypotheses147 
that govern the probability of an event A, a Bayesian can use the multiplication 
rule (A2) to find that

 P(A and H0) = P(A|H0)P(H0) (A3)

and

 P(A and H1) = P(A|H1)P(H1). (A4)

Moreover, 

 P(A) = P(A and H0) + P(A and H1). (A5)

The multiplication rule (A2) also shows that

 

P H A
P A and H

P A
1

1| .( )=
( )

( )  (A6)

We use (A4) to evaluate P(A and H1) in the numerator of (A6), and (A3), (A4), 
and (A5) to evaluate P(A) in the denominator:

 

P H A
P A|H P H

P A|H P H P A|H P H
1

0 1
1

1

0 1

|( )=
( ) ( )

( ) ( )+ ( ) (( ).  (A7)

This is a special case of Bayes’ rule. It yields the conditional probability of hypoth-
esis H0 given that event A has occurred. 

For a stylized example in a criminal case, H0 is the hypothesis that blood 
found at the scene of a crime came from a person other than the defendant; H1 is 
the hypothesis that the blood came from the defendant; A is the event that blood 
from the crime scene and blood from the defendant are both type A. Then P(H0) 
is the prior probability of H0, based on subjective judgment, while P(H0|A) is the 
posterior probability—updated from the prior using the data. 

147. H0 is read “H-sub-zero,” while H1 is “H-sub-one.”
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Type A blood occurs in 42% of the population. So P(A|H0) = 0.42.148 
Because the defendant has type A blood, P(A|H1) = 1. Suppose the prior prob-
abilities are P(H0) = P(H1) = 0.5. According to (A7), the posterior probability 
that the blood is from the defendant is

 
P H A1

1 05
042 05 1 05

070|
.

. . .
. .( ) = ×

× + ×
=  (A8)

Thus, the data increase the likelihood that the blood is the defendant’s. The prob-
ability went up from the prior value of P(H1) = 0.50 to the posterior value of 
P(H1|A) = 0.70.

More generally, H0 and H1 refer to parameters in a statistical model. For a styl-
ized example in an employment discrimination case, H0 asserts equal selection rates 
in a population of male and female applicants; H1 asserts that the selection rates are 
not equal; A is the event that a test statistic exceeds 2 in absolute value. In such situ-
ations, the Bayesian proceeds much as before. However, the frequentist computes 
P(A|H0), and rejects H0 if this probability falls below 5%. Frequentists have to stop 
there, because they view P(H0|A) as poorly defined at best. In their setup, P(H0) 
and P(H1) rarely make sense, and these prior probabilities are needed to compute 
P(H1|A): See supra equation (A7).

Assessing probabilities, conditional probabilities, and independence is not 
entirely straightforward, either for frequentists or Bayesians. Inquiry into the basis 
for expert judgment may be useful, and casual assumptions about independence 
should be questioned.149

B. The Spock Jury: Technical Details
The rest of this Appendix provides some technical backup for the examples in Sec-
tions IV and V, supra. We begin with the Spock jury case. On the null  hypothesis, 
a sample of 350 people was drawn at random from a large population that was 
50% male and 50% female. The number of women in the sample follows the 
binomial distribution. For example, the chance of getting exactly 102 women in 
the sample is given by the binomial formula150

 

n

j n j
f fj n j!

! !
.

× −( ) −( ) −
1  (A9)

148. Not all statisticians would accept the identification of a population frequency with P(A|H0). 
Indeed, H0 has been translated into a hypothesis that the true donor has been selected from the popula-
tion at random (i.e., in a manner that is uncorrelated with blood type). This step needs justification. 
See supra note 123.

149. For problematic assumptions of independence in litigation, see, e.g., Wilson v. State, 803 
A.2d 1034 (Md. 2002) (error to admit multiplied probabilities in a case involving two deaths of infants 
in same family); 1 McCormick, supra note 2, § 210; see also supra note 29 (on census litigation).

150. The binomial formula is discussed in, e.g., Freedman et al., supra note 12, at 255–61.
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In the formula, n stands for the sample size, and so n = 350; and j = 102. The 
f is the fraction of women in the population; thus, f = 0.50. The exclamation 
point denotes factorials: 1! = 1, 2! = 2 × 1 = 2, 3! = 3 × 2 × 1 = 6, and so forth. 
The chance of 102 women works out to 10–15. In the same way, we can com-
pute the chance of getting 101 women, or 100, or any other particular number. 
The chance of getting 102 women or fewer is then computed by addition. The 
chance is p = 2 × 10–15, as reported supra note 98. This is very bad news for the 
null hypothesis.

With the binomial distribution given by (9), the expected the number of 
women in the sample is

 n f = × =350 05 175. .  (A10)

The standard error is

 
n f f× × −( ) = × × =1 350 05 05 935. . . .  (A11)

The observed value of 102 is nearly 8 SEs below the expected value, which is a 
lot of SEs.

Figure 13 shows the probability histogram for the number of women in the 
sample.151 The graph is drawn so that the area between two values is proportional 
to the chance that the number of women will fall in that range. For example, take 
the rectangle over 175; its base covers the interval from 174.5 to 175.5. The area 
of this rectangle is 4.26% of the total area. So the chance of getting exactly 175 
women is 4.26%. Next, take the range from 165 to 185 (inclusive): 73.84% of the 
area falls into this range. This means there is a 73.84% chance that the number of 
women in the sample will be in the range from 165 to 185 (inclusive).

According to a fundamental theorem in statistics (the central limit theorem), 
the histogram follows the normal curve.152 Figure 13 shows the curve for com-
parison: The normal curve is almost indistinguishable from the top of the histo-
gram. For a numerical example, suppose the jury panel had included 155 women. 
On the null hypothesis, there is about a 1.85% chance of getting 155 women or 
fewer. The normal curve gives 1.86%. The error is nil. Ordinarily, we would just 
report p = 2%, as in the text (supra Section IV.B.1).

Finally, we consider power. Suppose we reject the null hypothesis when the 
number of women in the sample is 155 or less. Let us assume a particular alterna-
tive hypothesis that quantifies the degree of discrimination against women: The 
jury panel is selected at random from a population that is 40% female, rather than 
50%. Figure 14 shows the probability histogram for the number of women, but 
now the histogram is computed according to the alternative hypothesis. Again, 

151. Probability histograms are discussed in, e.g., id. at 310–13.
152. The central limit theorem is discussed in, e.g., id. at 315–27.
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Figure 5-13.eps
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Note: The vertical line is placed at 155.5, and so the area to the left of it includes the rectangles over 
155, 154, . . . ; the area represents the chance of getting 155 women or fewer. Cf. Freedman et al., 
supra note 12, at 317. The units on the vertical axis are “percent per standard unit”; cf. id. at 80, 315.

Figure 13.  Probability histogram for the number of women in a random sample 
of 350 people drawn from a large population that is 50% female and 
50% male. The normal curve is shown for comparison. About 2% of 
the area under the histogram is to the left of 155 (marked by a heavy 
vertical line). 

5-14 �xed image

Figure 14.  Probability histogram for the number of women in a random sample 
of 350 people drawn from a large population that is 40% female and 
60% male. The normal curve is shown for comparison. The area to 
the left of 155 (marked by a heavy vertical line) is about 95%. 
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the histogram follows the normal curve. About 95% of the area is to the left of 
155, and so power is about 95%. The area can be computed exactly by using the 
binomial distribution, or to an excellent approximation using the normal curve.

Figures 13 and 14 have the same shape: The central limit theorem is at work. 
However, the histograms are centered differently. Figure 13 is centered at 175, 
according to requirements of the null hypothesis. Figure 14 is centered at 140, 
because the alternative hypothesis is used to determine the center, not the null 
hypothesis. Thus, 155 is well to the left of center in Figure 13, and well to the 
right in Figure 14: The figures have different centers. The main point of Figures 13 
and 14 is that chances can often be approximated by areas under the normal curve, 
justifying the large-sample theory presented supra Sections IV.A–B.

C. The Nixon Papers: Technical Details
With the Nixon papers, the population consists of 20,000 boxes. A random sample 
of 500 boxes is drawn and each sample box is appraised. Statistical theory enables 
us to make some precise statements about the behavior of the sample average.

•	 The	 expected	 value	 of	 the	 sample	 average	 equals	 the	 population	 aver-
age. Even more tersely, the sample average is an unbiased estimate of the 
population average.

•	 The	standard	error	for	the	sample	average	equals

 

N n
N n

−
−

×
1

σ
.  (A12)

In (A12), the N stands for the size of the population, which is 20,000; and n stands 
for the size of the sample, which is 500. The first factor in (A12), with the square 
root, is the finite sample correction factor. Here, as in many other such examples, 
the correction factor is so close to 1 that it can safely be ignored. (This is why the 
size of population usually has no bearing on the precision of the sample average as 
an estimator for the population average.) Next, s is the population standard devia-
tion. This is unknown, but it can be estimated by the sample standard deviation, 
which is $2200. The SE for the sample mean is therefore estimated from the data as 
$2200/ 500 , which is nearly $100. Plaintiff ’s total claim is 20,000 times the sam-
ple average. The SE for the total claim is therefore 20,000 × $100 = $2,000,000. 
(Here, the size of the population comes into the formula.)

With a large sample, the probability histogram for the sample average follows 
the normal curve quite closely. That is a consequence of the central limit theorem. 
The center of the histogram is the population average. The SE is given by (A12), 
and is about $100. 
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•	 What	 is	 the	 chance	 that	 the	 sample	 average	 differs	 from	 the	 popula-
tion average by 1 SE or less? This chance is equal to the area under the 
probability histogram within 1 SE of average, which by the central limit 
 theorem is almost equal to the area under the standard normal curve 
between –1 and 1; that normal area is about 68%.

•	 What	 is	 the	 chance	 that	 the	 sample	 average	differs	 from	 the	population	
average by 2 SE or less? By the same reasoning, this chance is about equal 
to the area under the standard normal curve between –2 and 2, which is 
about 95%.

•	 What	 is	 the	 chance	 that	 the	 sample	 average	differs	 from	 the	population	
average by 3 SE or less? This chance is about equal to the area under the 
standard normal curve between –3 and 3, which is about 99.7%.

To sum up, the probability histogram for the sample average is centered at 
the population average. The spread is given by the standard error. The histogram 
follows the normal curve. That is why confidence levels can be based on the stan-
dard error, with confidence levels read off the normal curve—for estimators that 
are essentially unbiased, and obey the central limit theorem (supra Section IV.A.2, 
Appendix Section B).153 These large-sample methods generally work for sums, 
averages, and rates, although much depends on the design of the sample.

More technically, the normal curve is the density of a normal distribution. 
The standard normal density has mean equal to 0 and standard error equal to 1. 
Its equation is

y e x= − 2 2 2/ / π

where e = 2.71828. . . and p = 3.14159. . . . This density can be rescaled to have 
any desired mean and standard error. The resulting densities are the famous 
“ normal curves” or “bell-shaped curves” of statistical theory. In Figure 12, the 
density is scaled to match the probability histogram in terms of the mean and 
standard error; likewise in Figure 13.

D.  A Social Science Example of Regression: Gender Discrimination 
in Salaries 

1. The regression model

To illustrate social science applications of the kind that might be seen in litigation, 
Section V referred to a stylized example on salary discrimination. A particular 

153. See, e.g., id. at 409–24. On the standard deviation, see supra Section III.E; Freedman et al., 
supra note 12, at 67–72. The finite sample correction factor is discussed in id. at 367–70.
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regression model was used to predict salaries (dollars per year) of employees in a 
firm. It had three explanatory variables: education (years of schooling completed), 
experience (years with the firm), and a dummy variable for gender (1 for men and 
0 for women). The regression equation is 

 salary = a + b × education + c × experience + d × gender + e. (A13)

Equation (A13) is a statistical model for the data, with unknown parameters a, b, c, 
and d. Here, a is the intercept and the other parameters are regression coefficients. 
The e at the end of the equation is an unobservable error term. In the right-hand 
side of (A3) and similar expressions, by convention, the multiplications are done 
before the additions. 

As noted in Section V, the equation is a formal analog of Hooke’s law (1). 
According to the model, an employee’s salary is determined as if by computing

 a + b × education + c × experience + d × gender (A14)

and then adding an error e drawn at random from a box of tickets. Expres-
sion (A14) is the expected value for salary, given the explanatory variables (educa-
tion, experience, gender). The error term is needed to account for deviations from 
expected: Salaries are not going to be predicted very well by linear combinations 
of variables such as education and experience.

The parameters are estimated from the data using least squares. If the esti-
mated coefficient for the dummy variable turns out to be positive and statistically 
significant, that would be evidence of disparate impact. Men earn more than 
women, even after adjusting for differences in background factors that might affect 
productivity. Suppose the estimated equation turns out as follows:

predicted salary = $7100 + $1300 × education + $2200
 × experience + $700 × gender. (A15)

According to (A15), the estimated value for the intercept a in (A14) is $7100; the 
estimated value for the coefficient b is $1300, and so forth. According to equation 
(A15), every extra year of education is worth $1300. Similarly, every extra year 
of experience is worth $2200. And, most important, the company gives men a 
salary premium of $700 over women with the same education and experience. 

A male employee with 12 years of education (high school) and 10 years of 
experience, for example, would have a predicted salary of

$7100 + $1300 × 12 + $2200 × 10 + $700 × 1 
 = $7100 + $15,600 + $22,000 + $700 = $45,400. (A16)

A similarly situated female employee has a predicted salary of only
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$7100 + $1300 × 12 + $2200 × 10 + $700 × 0
 = $7100 + $15,600 + $22,000 + $0 = $44,700. (A17)

Notice the impact of the gender variable in the model: $700 is added to equation 
(A16), but not to equation (A17).

A major step in proving discrimination is showing that the estimated 
 coefficient of the gender variable—$700 in the numerical illustration—is statisti-
cally significant. This showing depends on the assumptions built into the model. 
Thus, each extra year of education is assumed to be worth the same across all levels 
of experience. Similarly, each extra year of experience is worth the same across all 
levels of education. Furthermore, the premium paid to men does not depend sys-
tematically on education or experience. Omitted variables such as ability,  quality 
of education, or quality of experience do not make any systematic difference to 
the predictions of the model.154 These are all assumptions made going into the 
analysis, rather than conclusions coming out of the data.

Assumptions are also made about the error term—the mysterious e at the end 
of (A13). The errors are assumed to be independent and identically distributed 
from person to person in the dataset. Such assumptions are critical when comput-
ing p-values and demonstrating statistical significance. Regression modeling that 
does not produce statistically significant coefficients will not be good evidence 
of discrimination, and statistical significance cannot be established unless stylized 
assumptions are made about unobservable error terms. 

The typical regression model, like the one sketched above, therefore involves a 
host of assumptions. As noted in Section V, Hooke’s law— equation (1)—is relatively 
easy to test experimentally. For the salary discrimination model— equation (A13)—
validation would be difficult. That is why we suggested that when expert testimony 
relies on statistical models, the court may well inquire about the assumptions behind 
the model and why they apply to the case at hand. 

2. Standard errors, t-statistics, and statistical significance

Statistical proof of discrimination depends on the significance of the estimated 
coefficient for the gender variable. Significance is determined by the t-test, using 
the standard error. The standard error measures the likely difference between 
the estimated value for the coefficient and its true value. The estimated value is 
$700—the coefficient of the gender variable in equation (A5); the true value d 
in (A13), remains unknown. According to the model, the difference between 
the estimated value and the true value is due to the action of the error term e in 
(A3). Without e, observed values would line up perfectly with expected values, 

154. Technically, these omitted variables are assumed to be independent of the error term in 
the equation.
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and estimated values for parameters would be exactly equal to true values. This 
does not happen.

The t-statistic is the estimated value divided by its standard error. For exam-
ple, in (A15), the estimate for d is $700. If the standard error is $325, then t is 
$700/$325 = 2.15. This is significant—that is, hard to explain as the product 
of random error. Under the null hypothesis that d is zero, there is only about a 
5% chance that the absolute value of t is greater than 2. (We are assuming the 
sample is large.) Thus, statistical significance is achieved (supra Section IV.B.2). 
Significance would be taken as evidence that d—the true parameter in the model 
(A13)—does not vanish. According to a viewpoint often presented in the social 
science journals and the courtroom, here is statistical proof that gender matters 
in determining salaries. On the other hand, if the standard error is $1400, then t 
is $700/$1400 = 0.5. The difference between the estimated value of d and zero 
could easily result from chance. So the true value of d could well be zero, in which 
case gender does not affect salaries. 

Of course, the parameter d is only a construct in a model. If the model is 
wrong, the standard error, t-statistic, and significance level are rather difficult to 
interpret. Even if the model is granted, there is a further issue. The 5% is the 
chance that the absolute value of t exceeds 2, given the model and given the null 
hypothesis that d is zero. However, the 5% is often taken to be the chance of the 
null hypothesis given the data. This misinterpretation is commonplace in the social 
science literature, and it appears in some opinions describing expert testimony.155 
For a frequentist statistician, the chance that d is zero given the data makes no 
sense: Parameters do not exhibit chance variation. For a Bayesian statistician, the 
chance that d is zero given the data makes good sense, but the computation via 
the t-test could be seriously in error, because the prior probability that d is zero 
has not been taken into account.156

The mathematical terminology in the previous paragraph may need to be 
deciphered: The “absolute value” of t is the magnitude, ignoring sign. Thus, the 
absolute value of both +3 and −3 is 3.

155. See supra Section IV.B & notes 102 & 116.
156. See supra Section IV & supra Appendix.
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Glossary of Terms
The following definitions are adapted from a variety of sources, including Michael 
O. Finkelstein & Bruce Levin, Statistics for Lawyers (2d ed. 2001), and David A. 
Freedman et al., Statistics (4th ed. 2007).

absolute value. Size, neglecting sign. The absolute value of +2.7 is 2.7; so is the 
absolute value of -2.7.

adjust for. See control for.

alpha (a). A symbol often used to denote the probability of a Type I error. See 
Type I error; size. Compare beta.

alternative hypothesis. A statistical hypothesis that is contrasted with the null 
hypothesis in a significance test. See statistical hypothesis; significance test.

area sample. A probability sample in which the sampling frame is a list of geo-
graphical areas. That is, the researchers make a list of areas, choose some at 
random, and interview people in the selected areas. This is a cost-effective 
way to draw a sample of people. See probability sample; sampling frame.

arithmetic mean. See mean.

average. See mean.

Bayes’ rule. In its simplest form, an equation involving conditional probabilities 
that relates a “prior probability” known or estimated before collecting cer-
tain data to a “posterior probability” that reflects the impact of the data on 
the prior probability. In Bayesian statistical inference, “the prior” expresses 
degrees of belief about various hypotheses. Data are collected according to 
some statistical model; at least, the model represents the investigator’s beliefs. 
Bayes’ rule combines the prior with the data to yield the posterior probability, 
which expresses the investigator’s beliefs about the parameters, given the data. 
See Appendix A. Compare frequentist.

beta (β). A symbol sometimes used to denote power, and sometimes to denote 
the probability of a Type II error. See Type II error; power. Compare alpha.

between-observer variability. Differences that occur when two observers 
measure the same thing. Compare within-observer variability.

bias. Also called systematic error. A systematic tendency for an estimate to be 
too high or too low. An estimate is unbiased if the bias is zero. (Bias does not 
mean prejudice, partiality, or discriminatory intent.) See nonsampling error. 
Compare sampling error. 

bin. A class interval in a histogram. See class interval; histogram.

binary variable. A variable that has only two possible values (e.g., gender). 
Called a dummy variable when the two possible values are 0 and 1.

binomial distribution. A distribution for the number of occurrences in repeated, 
independent “trials” where the probabilities are fixed. For example, the num-
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ber of heads in 100 tosses of a coin follows a binomial distribution. When 
the probability is not too close to 0 or 1 and the number of trials is large, the 
binomial distribution has about the same shape as the normal distribution. See 
normal distribution; Poisson distribution.

blind. See double-blind experiment.

bootstrap. Also called resampling; Monte Carlo method. A procedure for esti-
mating sampling error by constructing a simulated population on the basis of 
the sample, then repeatedly drawing samples from the simulated population.

categorical data; categorical variable. See qualitative variable. Compare quan-
titative variable.

central limit theorem. Shows that under suitable conditions, the probability 
histogram for a sum (or average or rate) will follow the normal curve. See 
histogram; normal curve.

chance error. See random error; sampling error.

chi-squared (c2). The chi-squared statistic measures the distance between the 
data and expected values computed from a statistical model. If the chi-squared 
statistic is too large to explain by chance, the data contradict the model. The 
definition of “large” depends on the context. See statistical hypothesis; sig-
nificance test.

class interval. Also, bin. The base of a rectangle in a histogram; the area of 
the rectangle shows the percentage of observations in the class interval. See 
histogram. 

cluster sample. A type of random sample. For example, investigators might take 
households at random, then interview all people in the selected households. 
This is a cluster sample of people: A cluster consists of all the people in a 
selected household. Generally, clustering reduces the cost of interviewing. 
See multistage cluster sample.

coefficient of determination. A statistic (more commonly known as R-squared) 
that describes how well a regression equation fits the data. See R-squared.

coefficient of variation. A statistic that measures spread relative to the mean: 
SD/mean, or SE/expected value. See expected value; mean; standard devia-
tion; standard error.

collinearity. See multicollinearity.

conditional probability. The probability that one event will occur given that 
another has occurred.

confidence coefficient. See confidence interval.

confidence interval. An estimate, expressed as a range, for a parameter. For 
estimates such as averages or rates computed from large samples, a 95% con-
fidence interval is the range from about two standard errors below to two 
standard errors above the estimate. Intervals obtained this way cover the true 
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value about 95% of the time, and 95% is the confidence level or the confi-
dence coefficient. See central limit theorem; standard error. 

confidence level. See confidence interval.

confounding variable; confounder. A confounder is correlated with the inde-
pendent variable and the dependent variable. An association between the 
dependent and independent variables in an observational study may not be 
causal, but may instead be due to confounding. See controlled experiment; 
observational study.

consistent estimator. An estimator that tends to become more and more accu-
rate as the sample size grows. Inconsistent estimators, which do not become 
more accurate as the sample gets larger, are frowned upon by statisticians.

content validity. The extent to which a skills test is appropriate to its intended 
purpose, as evidenced by a set of questions that adequately reflect the domain 
being tested. See validity. Compare reliability.

continuous variable. A variable that has arbitrarily fine gradations, such as a 
person’s height. Compare discrete variable.

control for. Statisticians may control for the effects of confounding variables in 
nonexperimental data by making comparisons for smaller and more homo-
geneous groups of subjects, or by entering the confounders as explanatory 
variables in a regression model. To “adjust for” is perhaps a better phrase 
in the regression context, because in an observational study the confound-
ing factors are not under experimental control; statistical adjustments are an 
imperfect substitute. See regression model.

control group. See controlled experiment.

controlled experiment. An experiment in which the investigators determine 
which subjects are put into the treatment group and which are put into the 
control group. Subjects in the treatment group are exposed by the investiga-
tors to some influence—the treatment; those in the control group are not so 
exposed. For example, in an experiment to evaluate a new drug, subjects in 
the treatment group are given the drug, and subjects in the control group are 
given some other therapy; the outcomes in the two groups are compared to 
see whether the new drug works.

  Randomization—that is, randomly assigning subjects to each group—is 
usually the best way to ensure that any observed difference between the two 
groups comes from the treatment rather than from preexisting differences. Of 
course, in many situations, a randomized controlled experiment is impractical, 
and investigators must then rely on observational studies. Compare observa-
tional study.

convenience sample. A nonrandom sample of units, also called a grab sample. 
Such samples are easy to take but may suffer from serious bias. Typically, mall 
samples are convenience samples.

http://nap.nationalacademies.org/13163


Reference Manual on Scientific Evidence: Third Edition

Copyright National Academy of Sciences. All rights reserved.

Reference Manual on Scientific Evidence

286

correlation coefficient. A number between –1 and 1 that indicates the extent of 
the linear association between two variables. Often, the correlation  coefficient 
is abbreviated as r.

covariance. A quantity that describes the statistical interrelationship of two vari-
ables. Compare correlation coefficient; standard error; variance.

covariate. A variable that is related to other variables of primary interest in a 
study; a measured confounder; a statistical control in a regression equation.

criterion. The variable against which an examination or other selection proce-
dure is validated. See validity.

data. Observations or measurements, usually of units in a sample taken from a 
larger population. 

degrees of freedom. See t-test.

dependence. Two events are dependent when the probability of one is affected 
by the occurrence or non-occurrence of the other. Compare independence; 
dependent variable.

dependent variable. Also called outcome variable. Compare independent variable. 

descriptive statistics. Like the mean or standard deviation, used to summarize 
data.

differential validity. Differences in validity across different groups of subjects. 
See validity.

discrete variable. A variable that has only a small number of possible values, 
such as the number of automobiles owned by a household. Compare con-
tinuous variable. 

distribution. See frequency distribution; probability distribution; sampling 
distribution.

disturbance term. A synonym for error term.

double-blind experiment. An experiment with human subjects in which 
 neither the diagnosticians nor the subjects know who is in the treatment 
group or the control group. This is accomplished by giving a placebo treat-
ment to patients in the control group. In a single-blind experiment, the 
patients do not know whether they are in treatment or control; the diagnosti-
cians have this information.

dummy variable. Generally, a dummy variable takes only the values 0 or 1, 
and distinguishes one group of interest from another. See binary variable; 
regression model.

econometrics. Statistical study of economic issues.

epidemiology. Statistical study of disease or injury in human populations.
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error term. The part of a statistical model that describes random error, i.e., the 
impact of chance factors unrelated to variables in the model. In econometrics, 
the error term is called a disturbance term.

estimator. A sample statistic used to estimate the value of a population  parameter. 
For example, the sample average commonly is used to estimate the population 
average. The term “estimator” connotes a statistical procedure, whereas an 
“estimate” connotes a particular numerical result.

expected value. See random variable.

experiment. See controlled experiment; randomized controlled experiment. 
Compare observational study.

explanatory variable. See independent variable; regression model. 

external validity. See validity.

factors. See independent variable.

Fisher’s exact test. A statistical test for comparing two sample proportions. For 
example, take the proportions of white and black employees getting a promo-
tion. An investigator may wish to test the null hypothesis that promotion does 
not depend on race. Fisher’s exact test is one way to arrive at a p-value. The 
calculation is based on the hypergeometric distribution. For details, see Michael 
O. Finkelstein and Bruce Levin, Statistics for Lawyers 154–56 (2d ed. 2001). 
See hypergeometric distribution; p-value; significance test; statistical hypothesis.

fitted value. See residual.

fixed significance level. Also alpha; size. A preset level, such as 5% or 1%; if 
the p-value of a test falls below this level, the result is deemed statistically sig-
nificant. See significance test. Compare observed significance level; p-value. 

frequency; relative frequency. Frequency is the number of times that some-
thing occurs; relative frequency is the number of occurrences, relative to a 
total. For example, if a coin is tossed 1000 times and lands heads 517 times, 
the frequency of heads is 517; the relative frequency is 0.517, or 51.7%.

frequency distribution. Shows how often specified values occur in a dataset. 

frequentist. Also called objectivist. Describes statisticians who view probabilities 
as objective properties of a system that can be measured or estimated. Com-
pare Bayesian. See Appendix.

Gaussian distribution. A synonym for the normal distribution. See normal 
distribution.

general linear model. Expresses the dependent variable as a linear combination 
of the independent variables plus an error term whose components may be 
dependent and have differing variances. See error term; linear combination; 
variance. Compare regression model.

grab sample. See convenience sample.
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heteroscedastic. See scatter diagram.

highly significant. See p-value; practical significance; significance test.

histogram. A plot showing how observed values fall within specified intervals, 
called bins or class intervals. Generally, matters are arranged so that the area 
under the histogram, but over a class interval, gives the frequency or rela-
tive frequency of data in that interval. With a probability histogram, the area 
gives the chance of observing a value that falls in the corresponding interval.

homoscedastic. See scatter diagram.

hypergeometric distribution. Suppose a sample is drawn at random, without 
replacement, from a finite population. How many times will items of a certain 
type come into the sample? The hypergeometric distribution gives the proba-
bilities. For more details, see 1 William Feller, An Introduction to Probability 
Theory and Its Applications 41–42 (2d ed. 1957). Compare Fisher’s exact test.

hypothesis. See alternative hypothesis; null hypothesis; one-sided hypothesis; 
significance test; statistical hypothesis; two-sided hypothesis.

hypothesis test. See significance test.

identically distributed. Random variables are identically distributed when they 
have the same probability distribution. For example, consider a box of num-
bered tickets. Draw tickets at random with replacement from the box. The 
draws will be independent and identically distributed.

independence. Also, statistical independence. Events are independent when 
the probability of one is unaffected by the occurrence or non-occurrence 
of the other. Compare conditional probability; dependence; independent 
variable; dependent variable.

independent variable. Independent variables (also called explanatory variables, 
predictors, or risk factors) represent the causes and potential confounders in 
a statistical study of causation; the dependent variable represents the effect. 
In an observational study, independent variables may be used to divide the 
population up into smaller and more homogenous groups (“stratification”). 
In a regression model, the independent variables are used to predict the 
dependent variable. For example, the unemployment rate has been used 
as the independent variable in a model for predicting the crime rate; the 
unemploy ment rate is the independent variable in this model, and the crime 
rate is the dependent variable. The distinction between independent and 
dependent variables is unrelated to statistical independence. See regression 
model. Compare dependent variable; dependence; independence.

indicator variable. See dummy variable. 

internal validity. See validity.

interquartile range. Difference between 25th and 75th percentile. See percentile.
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interval estimate. A confidence interval, or an estimate coupled with a standard 
error. See confidence interval; standard error. Compare point estimate.

least squares. See least squares estimator; regression model.

least squares estimator. An estimator that is computed by minimizing the sum 
of the squared residuals. See residual. 

level. The level of a significance test is denoted alpha (a). See alpha; fixed sig-
nificance level; observed significance level; p-value; significance test.

linear combination. To obtain a linear combination of two variables, multiply 
the first variable by some constant, multiply the second variable by another 
constant, and add the two products. For example, 2u + 3v is a linear com-
bination of u and v. 

list sample. See systematic sample.

loss function. Statisticians may evaluate estimators according to a mathematical 
formula involving the errors—that is, differences between actual values and 
estimated values. The “loss” may be the total of the squared errors, or the 
total of the absolute errors, etc. Loss functions seldom quantify real losses, but 
may be useful summary statistics and may prompt the construction of useful 
statistical procedures. Compare risk.

lurking variable. See confounding variable.

mean. Also, the average; the expected value of a random variable. The mean 
gives a way to find the center of a batch of numbers: Add the numbers and 
divide by how many there are. Weights may be employed, as in “weighted 
mean” or “weighted average.” See random variable. Compare median; mode. 

measurement validity. See validity. Compare reliability.

median. The median, like the mean, is a way to find the center of a batch of 
numbers. The median is the 50th percentile. Half the numbers are larger, 
and half are smaller. (To be very precise: at least half the numbers are greater 
than or equal to the median; At least half the numbers are less than or equal 
to the median; for small datasets, the median may not be uniquely defined.) 
Compare mean; mode; percentile.

meta-analysis. Attempts to combine information from all studies on a certain 
topic. For example, in the epidemiological context, a meta-analysis may 
attempt to provide a summary odds ratio and confidence interval for the effect 
of a certain exposure on a certain disease.

mode. The most common value. Compare mean; median.

model. See probability model; regression model; statistical model.

multicollinearity. Also, collinearity. The existence of correlations among the 
independent variables in a regression model. See independent variable; regres-
sion model.
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multiple comparison. Making several statistical tests on the same dataset. 
 Multiple comparisons complicate the interpretation of a p-value. For example, 
if 20 divisions of a company are examined, and one division is found to have 
a disparity significant at the 5% level, the result is not surprising; indeed, it 
would be expected under the null hypothesis. Compare p-value; significance 
test; statistical hypothesis.

multiple correlation coefficient. A number that indicates the extent to which 
one variable can be predicted as a linear combination of other variables. 
Its magnitude is the square root of R-squared. See linear combination; 
R-squared; regression model. Compare correlation coefficient.

multiple regression. A regression equation that includes two or more indepen-
dent variables. See regression model. Compare simple regression.

multistage cluster sample. A probability sample drawn in stages, usually after 
stratification; the last stage will involve drawing a cluster. See cluster sample; 
probability sample; stratified random sample.

multivariate methods. Methods for fitting models with multiple variables; in 
statistics, multiple response variables; in other fields, multiple explanatory 
variables. See regression model.

natural experiment. An observational study in which treatment and control 
groups have been formed by some natural development; the assignment of 
subjects to groups is akin to randomization. See observational study. Compare 
controlled experiment.

nonresponse bias. Systematic error created by differences between respondents 
and nonrespondents. If the nonresponse rate is high, this bias may be severe.

nonsampling error. A catch-all term for sources of error in a survey, other 
than sampling error. Nonsampling errors cause bias. One example is selection 
bias: The sample is drawn in a way that tends to exclude certain subgroups in 
the population. A second example is nonresponse bias: People who do not 
respond to a survey are usually different from respondents. A final example: 
Response bias arises, for example, if the interviewer uses a loaded question.

normal distribution. Also, Gaussian distribution. When the normal distribution 
has mean equal to 0 and standard error equal to 1, it is said to be “standard 
normal.” The equation for the density is then

 

 y e x= − 2 2 2/ / π
 
 where e = 2.71828. . . and p = 3.14159. . . . The density can be rescaled to 

have any desired mean and standard error, resulting in the famous “bell-
shaped curves” of statistical theory. Terminology notwithstanding, there need 
be nothing wrong with a distribution that differs from normal.
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null hypothesis. For example, a hypothesis that there is no difference between 
two groups from which samples are drawn. See significance test; statistical 
hypothesis. Compare alternative hypothesis. 

objectivist. See frequentist.

observational study. A study in which subjects select themselves into groups; 
investigators then compare the outcomes for the different groups. For exam-
ple, studies of smoking are generally observational. Subjects decide whether 
or not to smoke; the investigators compare the death rate for smokers to the 
death rate for nonsmokers. In an observational study, the groups may differ 
in important ways that the investigators do not notice; controlled experi-
ments minimize this problem. The critical distinction is that in a controlled 
experiment, the investigators intervene to manipulate the circumstances of 
the subjects; in an observational study, the investigators are passive observers. 
(Of course, running a good observational study is hard work, and may be 
quite useful.) Compare confounding variable; controlled experiment.

observed significance level. A synonym for p-value. See significance test. 
Compare fixed significance level.

odds. The probability that an event will occur divided by the probability that it 
will not. For example, if the chance of rain tomorrow is 2/3, then the odds 
on rain are (2/3)/(1/3) = 2/1, or 2 to 1; the odds against rain are 1 to 2.

odds ratio. A measure of association, often used in epidemiology. For example, if 
10% of all people exposed to a chemical develop a disease, compared with 5% 
of people who are not exposed, then the odds of the disease in the exposed 
group are 10/90 = 1/9, compared with 5/95 = 1/19 in the unexposed group. 
The odds ratio is (1/9)/(1/19) = 19/9 = 2.1. An odds ratio of 1 indicates no 
association. Compare relative risk.

one-sided hypothesis; one-tailed hypothesis. Excludes the possibility that 
a parameter could be, for example, less than the value asserted in the null 
hypothesis. A one-sided hypothesis leads to a one-sided (or one-tailed) test. 
See significance test; statistical hypothesis; compare two-sided hypothesis. 

one-sided test; one-tailed test. See one-sided hypothesis. 

outcome variable. See dependent variable.

outlier. An observation that is far removed from the bulk of the data. Outliers 
may indicate faulty measurements and they may exert undue influence on 
summary statistics, such as the mean or the correlation coefficient.

p-value. Result from a statistical test. The probability of getting, just by chance, 
a test statistic as large as or larger than the observed value. Large p-values 
are consistent with the null hypothesis; small p-values undermine the null 
hypothesis. However, p does not give the probability that the null hypothesis 
is true. If p is smaller than 5%, the result is statistically significant. If p is smaller 
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than 1%, the result is highly significant. The p-value is also called the observed 
significance level. See significance test; statistical hypothesis.

parameter. A numerical characteristic of a population or a model. See prob-
ability model.

percentile. To get the percentiles of a dataset, array the data from the smallest 
value to the largest. Take the 90th percentile by way of example: 90% of the 
values fall below the 90th percentile, and 10% are above. (To be very precise: 
At least 90% of the data are at the 90th percentile or below; at least 10% of the 
data are at the 90th percentile or above.) The 50th percentile is the median: 
50% of the values fall below the median, and 50% are above. On the LSAT, 
a score of 152 places a test taker at the 50th percentile; a score of 164 is at 
the 90th percentile; a score of 172 is at the 99th percentile. Compare mean; 
median; quartile. 

placebo. See double-blind experiment.

point estimate. An estimate of the value of a quantity expressed as a single num-
ber. See estimator. Compare confidence interval; interval estimate.

Poisson distribution. A limiting case of the binomial distribution, when the 
number of trials is large and the common probability is small. The parameter 
of the approximating Poisson distribution is the number of trials times the 
common probability, which is the expected number of events. When this 
number is large, the Poisson distribution may be approximated by a normal 
distribution.

population. Also, universe. All the units of interest to the researcher. Compare 
sample; sampling frame. 

population size. Also, size of population. Number of units in the population.

posterior probability. See Bayes’ rule.

power. The probability that a statistical test will reject the null hypothesis. To 
compute power, one has to fix the size of the test and specify parameter values 
outside the range given by the null hypothesis. A powerful test has a good 
chance of detecting an effect when there is an effect to be detected. See beta; 
significance test. Compare alpha; size; p-value.

practical significance. Substantive importance. Statistical significance does not 
necessarily establish practical significance. With large samples, small differ-
ences can be statistically significant. See significance test. 

practice effects. Changes in test scores that result from taking the same test 
twice in succession, or taking two similar tests one after the other.

predicted value. See residual. 

predictive validity. A skills test has predictive validity to the extent that test 
scores are well correlated with later performance, or more generally with 
outcomes that the test is intended to predict. See validity. Compare reliability.
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predictor. See independent variable.

prior probability. See Bayes’ rule.

probability. Chance, on a scale from 0 to 1. Impossibility is represented by 0, 
certainty by 1. Equivalently, chances may be quoted in percent; 100% cor-
responds to 1, 5% corresponds to .05, and so forth.

probability density. Describes the probability distribution of a random variable. 
The chance that the random variable falls in an interval equals the area below 
the density and above the interval. (However, not all random variables have 
densities.) See probability distribution; random variable.

probability distribution. Gives probabilities for possible values or ranges of 
values of a random variable. Often, the distribution is described in terms of a 
density. See probability density.

probability histogram. See histogram.

probability model. Relates probabilities of outcomes to parameters; also, statis-
tical model. The latter connotes unknown parameters.

probability sample. A sample drawn from a sampling frame by some objective 
chance mechanism; each unit has a known probability of being sampled. Such 
samples minimize selection bias, but can be expensive to draw.

psychometrics. The study of psychological measurement and testing.

qualitative variable; quantitative variable. Describes qualitative features of 
subjects in a study (e.g., marital status—never-married, married, widowed, 
divorced, separated). A quantitative variable describes numerical features 
of the subjects (e.g., height, weight, income). This is not a hard-and-fast 
distinction, because qualitative features may be given numerical codes, as 
with a dummy variable. Quantitative variables may be classified as discrete 
or continuous. Concepts such as the mean and the standard deviation apply 
only to quantitative variables. Compare continuous variable; discrete variable; 
dummy variable. See variable.

quartile. The 25th or 75th percentile. See percentile. Compare median.

R-squared (R2). Measures how well a regression equation fits the data. R-squared 
varies between 0 (no fit) and 1 (perfect fit). R-squared does not measure the 
extent to which underlying assumptions are justified. See regression model. 
Compare multiple correlation coefficient; standard error of regression.

random error. Sources of error that are random in their effect, like draws made 
at random from a box. These are reflected in the error term of a statistical 
model. Some authors refer to random error as chance error or sampling error. 
See regression model.

random variable. A variable whose possible values occur according to some 
probability mechanism. For example, if a pair of dice are thrown, the total 
number of spots is a random variable. The chance of two spots is 1/36, the 
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chance of three spots is 2/36, and so forth; the most likely number is 7, with 
chance 6/36.

  The expected value of a random variable is the weighted average of 
the possible values; the weights are the probabilities. In our example, the 
expected value is

 

1
36

2
2
36

3
3
36

4
5
36

6
6
36

7

5
36

8
4
36

9
3

× + × + × + × + ×

+ × + × +
336

10
2
36

11
1
36

12× + × + ×

 In many problems, the weighted average is computed with respect to the 
density; then sums must be replaced by integrals. The expected value need 
not be a possible value for the random variable.

  Generally, a random variable will be somewhere around its expected value, 
but will be off (in either direction) by something like a standard error (SE) 
or so. If the random variable has a more or less normal distribution, there is 
about a 68% chance for it to fall in the range expected value – SE to expected 
value + SE. See normal curve; standard error. 

randomization. See controlled experiment; randomized controlled experiment.

randomized controlled experiment. A controlled experiment in which sub-
jects are placed into the treatment and control groups at random—as if by a 
lottery. See controlled experiment. Compare observational study.

range. The difference between the biggest and the smallest values in a batch of 
numbers.

rate. In an epidemiological study, the number of events, divided by the size of 
the population; often cross-classified by age and gender. For example, the 
death rate from heart disease among American men ages 55–64 in 2004 was 
about three per thousand. Among men ages 65–74, the rate was about seven 
per thousand. Among women, the rate was about half that for men. Rates 
adjust for differences in sizes of populations or subpopulations. Often, rates 
are computed per unit of time, e.g., per thousand persons per year. Data 
source: Statistical Abstract of the United States tbl. 115 (2008). 

regression coefficient. The coefficient of a variable in a regression equation. 
See regression model.

regression diagnostics. Procedures intended to check whether the assumptions 
of a regression model are appropriate.

regression equation. See regression model. 

regression line. The graph of a (simple) regression equation. 

regression model. A regression model attempts to combine the values of certain 
variables (the independent or explanatory variables) in order to get expected 
values for another variable (the dependent variable). Sometimes, the phrase 
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“regression model” refers to a probability model for the data; if no qualifica-
tions are made, the model will generally be linear, and errors will be assumed 
independent across observations, with common variance, The coefficients in 
the linear combination are called regression coefficients; these are parameters. 
At times, “regression model” refers to an equation (“the regression equation”) 
estimated from data, typically by least squares.

  For example, in a regression study of salary differences between men and 
women in a firm, the analyst may include a dummy variable for gender, 
as well as statistical controls such as education and experience to adjust for 
 productivity differences between men and women. The dummy variable 
would be defined as 1 for the men and 0 for the women. Salary would be 
the dependent variable; education, experience, and the dummy would be the 
independent  variables. See least squares; multiple regression; random error; 
variance. Compare general linear model. 

relative frequency. See frequency.

relative risk. A measure of association used in epidemiology. For example, if 
10% of all people exposed to a chemical develop a disease, compared to 5% 
of people who are not exposed, then the disease occurs twice as frequently 
among the exposed people: The relative risk is 10%/5% = 2. A relative risk of 
1 indicates no association. For more details, see Leon Gordis, Epidemiology 
(4th ed. 2008). Compare odds ratio.

reliability. The extent to which a measurement process gives the same results on 
repeated measurement of the same thing. Compare validity.

representative sample. Not a well-defined technical term. A sample judged to 
fairly represent the population, or a sample drawn by a process likely to give 
samples that fairly represent the population, for example, a large probability 
sample.

resampling. See bootstrap.

residual. The difference between an actual and a predicted value. The predicted 
value comes typically from a regression equation, and is better called the fit-
ted value, because there is no real prediction going on. See regression model; 
independent variable.

response variable. See independent variable.

risk. Expected loss. “Expected” means on average, over the various datasets that 
could be generated by the statistical model under examination. Usually, risk 
cannot be computed exactly but has to be estimated, because the parameters 
in the statistical model are unknown and must be estimated. See loss func-
tion; random variable. 

risk factor. See independent variable.

robust. A statistic or procedure that does not change much when data or assump-
tions are modified slightly.
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sample. A set of units collected for study. Compare population. 

sample size. Also, size of sample. The number of units in a sample.

sample weights. See stratified random sample.

sampling distribution. The distribution of the values of a statistic, over all pos-
sible samples from a population. For example, suppose a random sample is 
drawn. Some values of the sample mean are more likely; others are less likely. 
The sampling distribution specifies the chance that the sample mean will fall 
in one interval rather than another.

sampling error. A sample is part of a population. When a sample is used to 
estimate a numerical characteristic of the population, the estimate is likely to 
differ from the population value because the sample is not a perfect micro-
cosm of the whole. If the estimate is unbiased, the difference between the 
estimate and the exact value is sampling error. More generally, 

 estimate = true value + bias + sampling error

 Sampling error is also called chance error or random error. See standard error. 
Compare bias; nonsampling error.

sampling frame. A list of units designed to represent the entire population as 
completely as possible. The sample is drawn from the frame. 

sampling interval. See systematic sample.

scatter diagram. Also, scatterplot; scattergram. A graph showing the relation-
ship between two variables in a study. Each dot represents one subject. One 
variable is plotted along the horizontal axis, the other variable is plotted along 
the vertical axis. A scatter diagram is homoscedastic when the spread is more 
or less the same inside any vertical strip. If the spread changes from one strip 
to another, the diagram is heteroscedastic.

selection bias. Systematic error due to nonrandom selection of subjects for 
study.

sensitivity. In clinical medicine, the probability that a test for a disease will give 
a positive result given that the patient has the disease. Sensitivity is analogous 
to the power of a statistical test. Compare specificity.

sensitivity analysis. Analyzing data in different ways to see how results depend 
on methods or assumptions. 

sign test. A statistical test based on counting and the binomial distribution. For 
example, a Finnish study of twins found 22 monozygotic twin pairs where 
1 twin smoked, 1 did not, and at least 1 of the twins had died. That sets up 
a race to death. In 17 cases, the smoker died first; in 5 cases, the nonsmoker 
died first. The null hypothesis is that smoking does not affect time to death, 
so the chances are 50-50 for the smoker to die first. On the null hypothesis, 
the chance that the smoker will win the race 17 or more times out of 22 is 
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8/1000. That is the p-value. The p-value can be computed from the  binomial 
distribution. For additional detail, see Michael O. Finkelstein & Bruce Levin, 
Statistics for Lawyers 339–41 (2d ed. 2001); David A. Freedman et al., 
 Statistics 262–63 (4th ed. 2007).

significance level. See fixed significance level; p-value.

significance test. Also, statistical test; hypothesis test; test of significance. A signifi-
cance test involves formulating a statistical hypothesis and a test statistic, com-
puting a p-value, and comparing p to some preestablished value (a) to decide 
if the test statistic is significant. The idea is to see whether the data conform 
to the predictions of the null hypothesis. Generally, a large test statistic goes 
with a small p-value; and small p-values would undermine the null hypothesis.

  For example, suppose that a random sample of male and female employees 
were given a skills test and the mean scores of the men and women were 
different—in the sample. To judge whether the difference is due to sampling 
error, a statistician might consider the implications of competing hypotheses 
about the difference in the population. The null hypothesis would say that 
on average, in the population, men and women have the same scores: The 
difference observed in the data is then just due to sampling error. A one-sided 
alternative hypothesis would be that on average, in the population, men score 
higher than women. The one-sided test would reject the null hypothesis if 
the sample men score substantially higher than the women—so much so that 
the difference is hard to explain on the basis of sampling error.

  In contrast, the null hypothesis could be tested against the two-sided 
alternative that on average, in the population, men score differently than 
women—higher or lower. The corresponding two-sided test would reject the 
null hypothesis if the sample men score substantially higher or substantially 
lower than the women.

  The one-sided and two-sided tests would both be based on the same 
data, and use the same t-statistic. However, if the men in the sample score 
higher than the women, the one-sided test would give a p-value only half as 
large as the two-sided test; that is, the one-sided test would appear to give 
stronger evidence against the null hypothesis. (“One-sided” and “one-tailed” 
are synonymous; so are “two-sided and “two-tailed.”) See p-value; statistical 
hypothesis; t-statistic.

significant. See p-value; practical significance; significance test.

simple random sample. A random sample in which each unit in the sampling 
frame has the same chance of being sampled. The investigators take a unit at 
random (as if by lottery), set it aside, take another at random from what is 
left, and so forth.

simple regression. A regression equation that includes only one independent 
variable. Compare multiple regression. 

size. A synonym for alpha (a).
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skip factor. See systematic sample.

specificity. In clinical medicine, the probability that a test for a disease will give 
a negative result given that the patient does not have the disease. Specificity 
is analogous to 1 – a, where a is the significance level of a statistical test. 
Compare sensitivity. 

spurious correlation. When two variables are correlated, one is not necessarily 
the cause of the other. The vocabulary and shoe size of children in elementary 
school, for example, are correlated—but learning more words will not make 
the feet grow. Such noncausal correlations are said to be spurious. (Originally, 
the term seems to have been applied to the correlation between two rates with 
the same denominator: Even if the numerators are unrelated, the common 
denominator will create some association.) Compare confounding variable.

standard deviation (SD). Indicates how far a typical element deviates from the 
average. For example, in round numbers, the average height of women age 
18 and over in the United States is 5 feet 4 inches. However, few women 
are exactly average; most will deviate from average, at least by a little. The 
SD is sort of an average deviation from average. For the height distribution, 
the SD is 3 inches. The height of a typical woman is around 5 feet 4 inches, 
but is off that average value by something like 3 inches.

  For distributions that follow the normal curve, about 68% of the elements 
are in the range from 1 SD below the average to 1 SD above the average. 
Thus, about 68% of women have heights in the range 5 feet 1 inch to 5 feet 
7 inches. Deviations from the average that exceed 3 or 4 SDs are extremely 
unusual. Many authors use standard deviation to also mean standard error. 
See standard error.

standard error (SE). Indicates the likely size of the sampling error in an esti-
mate. Many authors use the term standard deviation instead of standard error. 
Compare expected value; standard deviation.

standard error of regression. Indicates how actual values differ (in some aver-
age sense) from the fitted values in a regression model. See regression model; 
residual. Compare R-squared.

standard normal. See normal distribution.

standardization. See standardized variable.

standardized variable. Transformed to have mean zero and variance one. This 
involves two steps: (1) subtract the mean; (2) divide by the standard deviation.

statistic. A number that summarizes data. A statistic refers to a sample; a  parameter 
or a true value refers to a population or a probability model.

statistical controls. Procedures that try to filter out the effects of confounding 
variables on non-experimental data, for example, by adjusting through statisti-
cal procedures such as multiple regression. Variables in a multiple regression 
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equation. See multiple regression; confounding variable; observational study. 
Compare controlled experiment.

statistical dependence. See dependence.

statistical hypothesis. Generally, a statement about parameters in a probability 
model for the data. The null hypothesis may assert that certain parameters have 
specified values or fall in specified ranges; the alternative hypothesis would 
specify other values or ranges. The null hypothesis is tested against the data with 
a test statistic; the null hypothesis may be rejected if there is a statistically sig-
nificant difference between the data and the predictions of the null hypothesis.

  Typically, the investigator seeks to demonstrate the alternative hypothesis; 
the null hypothesis would explain the findings as a result of mere chance, 
and the investigator uses a significance test to rule out that possibility. See 
significance test.

statistical independence. See independence.

statistical model. See probability model.

statistical test. See significance test.

statistical significance. See p-value.

stratified random sample. A type of probability sample. The researcher divides 
the population into relatively homogeneous groups called “strata,” and draws 
a random sample separately from each stratum. Dividing the population into 
strata is called “stratification.” Often the sampling fraction will vary from 
stratum to stratum. Then sampling weights should be used to extrapolate 
from the sample to the population. For example, if 1 unit in 10 is sampled 
from stratum A while 1 unit in 100 is sampled from stratum B, then each unit 
drawn from A counts as 10, and each unit drawn from B counts as 100. The 
first kind of unit has weight 10; the second has weight 100. See Freedman et 
al., Statistics 401 (4th ed. 2007).

stratification. See independent variable; stratified random sample.

study validity. See validity.

subjectivist. See Bayesian.

systematic error. See bias.

systematic sample. Also, list sample. The elements of the population are num-
bered consecutively as 1, 2, 3, . . . . The investigators choose a starting point 
and a “sampling interval” or “skip factor” k. Then, every kth element is 
selected into the sample. If the starting point is 1 and k = 10, for example, the 
sample would consist of items 1, 11, 21, . . . . Sometimes the starting point 
is chosen at random from 1 to k: this is a random-start systematic sample.

t-statistic. A test statistic, used to make the t-test. The t-statistic indicates how 
far away an estimate is from its expected value, relative to the standard error. 
The expected value is computed using the null hypothesis that is being tested. 
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Some authors refer to the t-statistic, others to the z-statistic, especially when 
the sample is large. With a large sample, a t-statistic larger than 2 or 3 in abso-
lute value makes the null hypothesis rather implausible—the estimate is too 
many standard errors away from its expected value. See statistical hypothesis; 
significance test; t-test.

t-test. A statistical test based on the t-statistic. Large t-statistics are beyond the 
usual range of sampling error. For example, if t is bigger than 2, or smaller 
than –2, then the estimate is statistically significant at the 5% level; such values 
of t are hard to explain on the basis of sampling error. The scale for t-statistics 
is tied to areas under the normal curve. For example, a t-statistic of 1.5 is not 
very striking, because 13% = 13/100 of the area under the normal curve is 
outside the range from –1.5 to 1.5. On the other hand, t = 3 is remarkable: 
Only 3/1000 of the area lies outside the range from –3 to 3. This discussion is 
predicated on having a reasonably large sample; in that context, many authors 
refer to the z-test rather than the t-test.

  Consider testing the null hypothesis that the average of a population equals 
a given value; the population is known to be normal. For small samples, the 
t-statistic follows Student’s t-distribution (when the null hypothesis holds) 
rather than the normal curve; larger values of t are required to achieve sig-
nificance. The relevant t-distribution depends on the number of degrees of 
freedom, which in this context equals the sample size minus one. A t-test is 
not appropriate for small samples drawn from a population that is not normal. 
See p-value; significance test; statistical hypothesis.

test statistic. A statistic used to judge whether data conform to the null hypoth-
esis. The parameters of a probability model determine expected values for the 
data; differences between expected values and observed values are measured 
by a test statistic. Such test statistics include the chi-squared statistic (c2) and 
the t-statistic. Generally, small values of the test statistic are consistent with 
the null hypothesis; large values lead to rejection. See p-value; statistical 
hypothesis; t-statistic.

time series. A series of data collected over time, for example, the Gross National 
Product of the United States from 1945 to 2005.

treatment group. See controlled experiment. 

two-sided hypothesis; two-tailed hypothesis. An alternative hypothesis 
asserting that the values of a parameter are different from—either greater than 
or less than—the value asserted in the null hypothesis. A two-sided alterna-
tive hypothesis suggests a two-sided (or two-tailed) test. See significance test; 
statistical hypothesis. Compare one-sided hypothesis.

two-sided test; two-tailed test. See two-sided hypothesis.

Type I error. A statistical test makes a Type I error when (1) the null hypothesis 
is true and (2) the test rejects the null hypothesis, i.e., there is a false posi-
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tive. For example, a study of two groups may show some difference between 
samples from each group, even when there is no difference in the population. 
When a statistical test deems the difference to be significant in this situation, 
it makes a Type I error. See significance test; statistical hypothesis. Compare 
alpha; Type II error.

Type II error. A statistical test makes a Type II error when (1) the null hypoth-
esis is false and (2) the test fails to reject the null hypothesis, i.e., there is a 
false negative. For example, there may not be a significant difference between 
samples from two groups when, in fact, the groups are different. See signifi-
cance test; statistical hypothesis. Compare beta; Type I error.

unbiased estimator. An estimator that is correct on average, over the pos-
sible datasets. The estimates have no systematic tendency to be high or low. 
Compare bias.

uniform distribution. For example, a whole number picked at random from 1 
to 100 has the uniform distribution: All values are equally likely. Similarly, a 
uniform distribution is obtained by picking a real number at random between 
0.75 and 3.25: The chance of landing in an interval is proportional to the 
length of the interval. 

validity. Measurement validity is the extent to which an instrument measures 
what it is supposed to, rather than something else. The validity of a standard-
ized test is often indicated by the correlation coefficient between the test 
scores and some outcome measure (the criterion variable). See content valid-
ity; differential validity; predictive validity. Compare reliability.

  Study validity is the extent to which results from a study can be relied 
upon. Study validity has two aspects, internal and external. A study has high 
internal validity when its conclusions hold under the particular circumstances 
of the study. A study has high external validity when its results are gener-
alizable. For example, a well-executed randomized controlled double-blind 
experiment performed on an unusual study population will have high internal 
validity because the design is good; but its external validity will be debatable 
because the study population is unusual. 

  Validity is used also in its ordinary sense: assumptions are valid when they 
hold true for the situation at hand.

variable. A property of units in a study, which varies from one unit to another, 
for example, in a study of households, household income; in a study of 
people, employment status (employed, unemployed, not in labor force).

variance. The square of the standard deviation. Compare standard error; covariance.

weights. See stratified random sample. 

within-observer variability. Differences that occur when an observer measures 
the same thing twice, or measures two things that are virtually the same. 
Compare between-observer variability.
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z-statistic. See t-statistic.

z-test. See t-test.
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